MDV03-400

ULTRA-FAST RECOVERY DIODE

MAJOR PRODUCTS CHARACTERISTICS

$\mathbf{I}_{\mathrm{F}(\mathrm{AV})}$	3 A
$\mathrm{~V}_{\mathrm{RRM}}$	400 V
t_{rr}	25 ns
$\mathrm{~V}_{\mathrm{F}}$ (max)	1.4 V

FEATURES

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING

DESCRIPTION

Ultra-fast diode especially designed for modulation and flyback rectification in standard and high resolution displays for TV's and monitors.
The device is packaged in a DO-201AD axial enveloppe.

PRELIMINARY DATASHEET

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit
VRRM	Repetitive peak reverse voltage		400	V
$\mathrm{V}_{\text {RSM }}$	Non repetitive peak reverse voltage		440	V
IFRM	Repetive peak forward current	$t_{p} \leq 10 \mu s$	60	A
$\mathrm{IF}(\mathrm{AV})$	Average forward current*	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=65^{\circ} \mathrm{C} \\ & \delta=0.5 \end{aligned}$	3	A
IFSM	Surge non repetitive forward current	$\begin{aligned} & t_{p}=10 \mathrm{~ms} \\ & \text { Sinusoidal } \end{aligned}$	60	A
P	Power dissipation *	$\mathrm{T}_{\mathrm{a}}=65^{\circ} \mathrm{C}$	4.2	W
$\begin{gathered} \mathrm{T}_{\mathrm{stg}} \\ \mathrm{~T}_{\mathrm{j}} \end{gathered}$	Storage and junction temperature range		$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
$R_{\text {th }(\mathrm{j}-\mathrm{I})}$	Junction to lead	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }(\mathrm{j}-\mathrm{a})}$	Junction to ambient on printed circuit L lead = 10mm	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

* On infinite heatsink with 10 mm lead lengh.

MDV03-400
STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions		Typ.	Max.	Unit
I_{R} *	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 20 \\ & 0.5 \end{aligned}$	$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
V_{F} **	Forward Voltage Drop	$\mathrm{IF}_{\mathrm{F}}=3 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 1.5 \\ 1.4 \end{array}$	V

Pulse test : *tp=5ms, $\delta<2 \%$

$$
{ }^{* *} \mathrm{tp}=380 \mu \mathrm{~s}, \delta<2 \%
$$

DYNAMIC ELECTRICAL CHARACTERISTICS
TURN-OFF SWITCHING

Symbol	Parameter	Test Conditions	Typ.	Max.	Unit
trr	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \mathrm{di} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$		55	ns
		$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} \quad \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \quad \operatorname{Irr}=0.25 \mathrm{~A}$		25	ns

DYNAMIC ELECTRICAL CHARACTERISTICS
TURN-ON SWITCHING

Symbol	Parameter	Test Conditions	Typ.	Max.	Unit
tfr	Forward Recovery Time	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~A} \quad \mathrm{~d} \mathrm{l}_{\mathrm{F}} / \mathrm{dt}=60 \mathrm{~A} / \mu \mathrm{s}$ Measured at $1.1 \mathrm{~V}_{\mathrm{F}}$ max. $\mathrm{Tj}=25^{\circ} \mathrm{C}$		250	ns
VFP	Peak Forward Voltage			13	V

To evaluate the maximum conduction losses use the following equation :
$P=\frac{1.10 \times I_{0}}{2} \times \delta+\frac{0.050 \times I_{p}^{\wedge} 2}{3} \times \delta$
δ : duty cycle
$I_{p}:$ Peak current
Ex: for $\mathrm{I}_{\mathrm{p}}=3 \mathrm{~A}$ and $\delta=0.5, \mathrm{P}=0.9$ Watts.

PACKAGE MECHANICAL DATA

DO-201AD (Plastic)

REF.	DIMENSIONS				NOTES
	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A		9.50		0.374	1 - The lead diameter $\varnothing \mathrm{D}$ is not controlled over zone E 2 - The minimum axial lengh within which the device may be placed with its leads bent at right angles is 0.59 " $(15 \mathrm{~mm})$
B	25.40		1.000		
$\varnothing \mathrm{C}$		5.30		0.209	
$\varnothing \mathrm{D}$		1.30		0.051	
E		1.25		0.049	

Weight: 1 g
Marking : Type number - Date code
White band indicated cathode cooling methode : by convertion (method A)

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

