2 A, 40 V Schottky Barrier Diode

These Schottky barrier diodes are optimized for low forward voltage drop and low leakage current and are offered in a Chip Scale Package (CSP) to reduce board space. The low thermal resistance enables designers to meet the challenging task of achieving higher efficiency and meeting reduced space requirements.

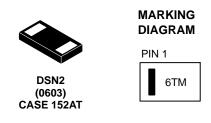
Features

- Low Forward Voltage Drop 520 mV (Typ.) @ $I_F = 2 A$
- Low Reverse Current 35 μ A (Typ.) @ V_R = 40 V
- 2 A of Continuous Forward Current
- ESD Rating Human Body Model: Class 3B
 - Machine Model: Class C
- High Switching Speed
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- LCD and Keypad Backlighting
- Camera Photo Flash
- Buck and Boost dc-dc Converters
- Reverse Voltage and Current Protection
- Clamping & Protection

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Reverse Voltage	V _R	40	V
Forward Current (DC)	١ _F	2	А
Forward Surge Current (60 Hz @ 1 cycle)	I _{FSM}	19	A
Repetitive Peak Forward Current (Pulse Wave = 1 sec, Duty Cycle = 66%)	I _{FRM}	3.4	A
ESD Rating: Human Body Model Machine Model	ESD	> 8 > 400	kV V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

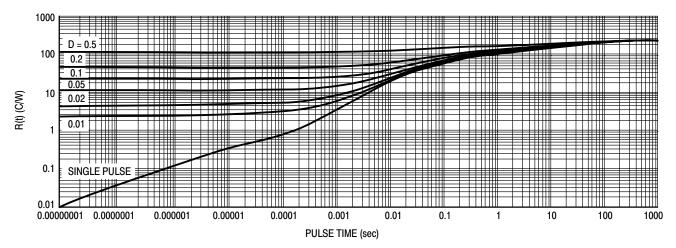
6T = Specific Device Code M = Date Code

PIN CONNECTIONS

1 0 2 CATHODE ANODE

ORDERING INFORMATION

Device	Package	Shipping [†]
NSR20406NXT5G	DSN2 (Pb-Free)	5000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Thermal Resistance Junction–to–Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$	R _{θJA} P _D			245 510	°C/W mW
Thermal Resistance Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$	R _{θJA} P _D			90 1.4	°C/W W
Storage Temperature Range	T _{stg}			-40 to +125	°C
Junction Temperature	TJ			+150	°C

1. Mounted onto a 4 in square FR-4 board 50 mm sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state.

2. Mounted onto a 4 in square FR-4 board 650 mm sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state.

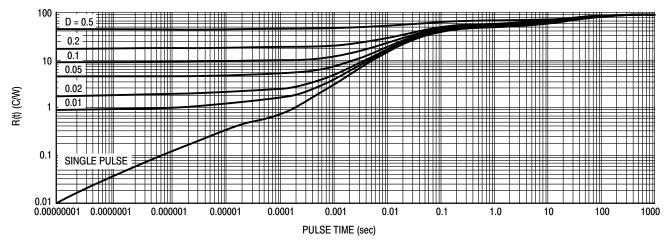



Figure 2. Thermal Response (Note 2)

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Min	Тур	Max	Unit
Reverse Leakage $(V_R = 10 V)$ $(V_R = 40 V)$	۱ _R		3 35	15 150	μΑ
Forward Voltage $(I_F = 10 \text{ mA})$ $(I_F = 100 \text{ mA})$ $(I_F = 500 \text{ mA})$ $(I_F = 1 \text{ A})$ $(I_F = 2 \text{ A})$	VF	- - - - -	240 310 380 430 520	280 350 420 470 550	mV
Total Capacitance ($V_R = 2.0 \text{ V}$, f = 1.0 MHz)	CT	-	140	_	pF
Reverse Recovery Time ($I_F = I_R = 10 \text{ mA}, I_{R(REC)} = 1.0 \text{ mA}, Figure 3$)		-	53	-	ns
Peak Forward Recovery Voltage (I _F = 100 mA, t_r = 20 ns, Figure 4)	V _{FRM}	-	440	-	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

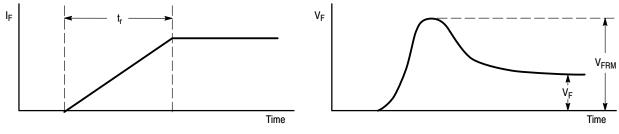
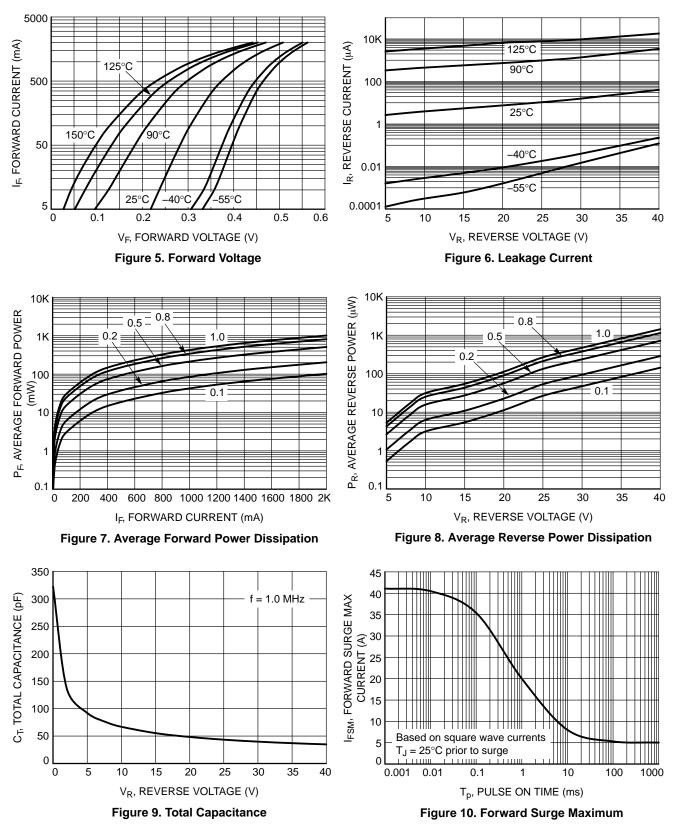



Figure 4. Peak Forward Recover Voltage Definition

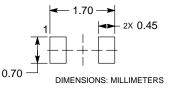
TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

DSN2, 1.6x0.8, 1.2P, (0603)

CASE 152AT ISSUE A

BOTTOM VIEW


2X I

NOTES:

 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.

_	MILLIMETERS		
DIM	MIN	MAX	
Α	0.25	0.31	
A1	0.00	0.05	
b	0.55	0.65	
D	1.60 BSC		
Е	0.80 BSC		
е	1.20 BSC		
L	0.25	0.35	

RECOMMENDED MOUNTING FOOTPRINT*

See Application Note AND8464/D for more mounting details

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hard use as earising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall i

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative