

TIC206A, TIC206B, TIC206D, TIC206M, TIC206N, TIC206S

SILICON BIDIRECTIONAL TRIODE THYRISTOR

- 4 A RMS
- · Glass Passivated Wafer
- 100 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1-3)
- Sensitive gate triacs
- Compliance to ROHS

DESCRIPTION

This device is a bidirectional triode thyristor (triac) which may be triggered from the off-state to the on-state by either polarity of gate signal with main Terminal 2 at either polarity.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings	Value					Unit	
		Α	В	D	М	S	N	
V _{DRM}	Repetitive peak off-state voltage (see Note1)	100	200	400	600	700	800	٧
I _{T(RMS)}	Full-cycle RMS on-state current at (or below) 70°C case temperature (see note2)	4				Α		
I _{TSM}	Peak on-state surge current full-sine-wave (see Note3)				Α			
I _{TSM}	Peak on-state surge current half-sine-wave (see Note4)	30					Α	
I _{GM}	Peak gate current		± 0.2					Α
P _{GM}	Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤200 µs)		1.3					W
P _{G(AV)}	Average gate power dissipation at (or below) 85°C case (see Note5)		0.3					W
T _C	Operating case temperature range		-40 to +110					°C
T _{stg}	Storage temperature range		-40 to +125					°C
TL	Lead temperature 1.6 mm from case for 10 seconds 230				°C			

TIC206A, TIC206B, TIC206D, TIC206M, TIC206N, TIC206S

Notes:

- 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal
- 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 160 mA/°C.
- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 5. This value applies for a maximum averaging time of 20 ms.

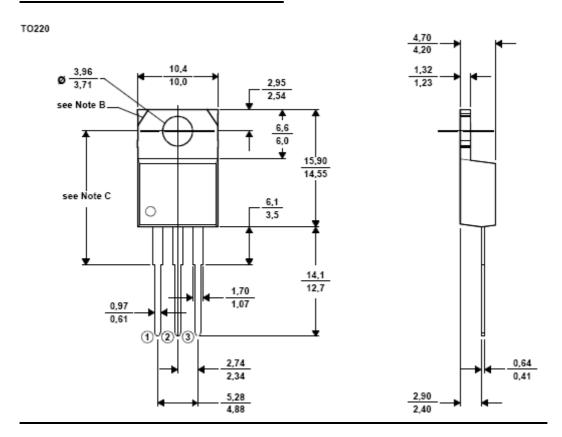
THERMAL CHARACTERISTICS

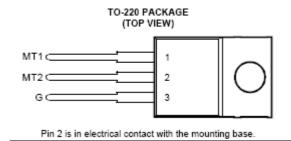
Symbol	Ratings	Value	Unit	
R _{∂JC}	Junction to case thermal resistance	≤ 7.8	°C/W	
R _{∂JA}	Junction to free air thermal resistance	≤ 62.5		

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Mx	Unit	
I _{DRM}	Repetitive peak off- state current	V_D = Rated V_{DRM} , , I_G = 0, T_C = 110°C	-	-	±1	mA	
I _{GT}	Gate trigger current	V_{supply} = +12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs	-	0.5	5		
		V_{supply} = +12 V†, R_L = 10 Ω , $t_{p(g)}$ = > 20 μs	-	-1.5	-5	mA	
		$V_{\text{supply}} = -12 \text{ V}^{+}, R_{\text{L}} = 10 \Omega, t_{\text{p(g)}} = > 20 \mu \text{s}$	-	-2	-5)	
		$V_{\text{supply}} = -12 \text{ V}^{+}, R_{\text{L}} = 10 \Omega, t_{\text{p(g)}} = > 20 \mu \text{s}$	-	3.6	10		
V _{GT}	Gate trigger voltage	$V_{\text{supply}} = +12 \text{ V}^{\dagger}, R_{\text{L}} = 10 \Omega, t_{\text{p(g)}} = > 20 \mu \text{s}$	_	0.7	2	V	
		V_{supply} = +12 V†, R_L = 10 Ω , $t_{p(g)}$ = > 20 μs	_	-0.7	-2		
		V_{supply} = -12 V†, R _L = 10 Ω , $t_{p(g)}$ = > 20 μ s	_	-0.8	-2		
		V_{supply} = -12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs	-	8.0	2		
I _H	Holding current	V_{supply} = +12 V†, I_G = 0, initiating I_{TM} = 100 mA	-	2	15	mA	
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}, I_{\text{G}} = 0,$ initiating $I_{\text{TM}} = -100 \text{ mA}$	-	-4	-15	111/1	
IL	Latching current	V _{supply} = +12 V† (seeNote7)	-	-	30	mA	
		$V_{\text{supply}} = -12 \text{ V} + (\text{seeNote7})$	30				
V _{TM}	Peak on-state voltage	$I_{TM} = \pm 4.2 \text{ A}, I_G = 50 \text{ mA} \text{ (see Note6)}$	-	±1.3	±2.2	V	
dv/dt	Critical rate of rise of off-state voltage	V_{DRM} = Rated V_{DRM} , I_G = 0 T_C = 110°C	-	±50	-	.,,	
dv/dt _©	Critical rise of communication voltage	V_{DRM} = Rated V_{DRM} , I_{TRM} = ± 4.2A T_C = 85°C	±1	±1.3	±2.5	V/µs	


[†] All voltages are whit respect to Main Terminal 1.



TIC206A, TIC206B, TIC206D, TIC206M, TIC206N, TIC206S

Note 6: This parameters must be measured using pulse techniques, $t_W = \le 1 \mu s$, duty cycle $\le 2 \%$, voltage-sensing contacts, separate from the courrent-carrying contacts are located within 3.2mm (1/8 inch) from de device body. Note 7: The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100\Omega$, $t_{t_{t_0}} = 20 \mu s$, $t_{t_0} = 15 \mu s$.

MECHANICAL DATA CASE TO-220

Pin 1 :	Main Terminal 1
Pin 2 :	Main Terminal 2
Pin 3 :	Gate