
Bourns®

- High Current Triacs
- 16 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- 125 A Peak Current
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	TIC246D		400		
Repetitive peak off-state voltage (see Note 1)	TIC246M	M	600	V	
	TIC246S	V _{DRM}	700		
	TIC246N		800		
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)			16	A	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			125	A	
Peak gate current			±1	A	
Operating case temperature range			-40 to +110	°C	
Storage temperature range			-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds			230	°C	

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 400 mA/°C.

3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	$V_D = rated V_{DRM}$	$I_{G} = 0$	T _C = 110°C			±2	mA
I _{GT}		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		12	50	mA
	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-19	-50	
	current	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-16	-50	
		$V_{supply} = -12 V_{\dagger}^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		34		
V _{GT}		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		0.8	2	
	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	V
	voltage	$V_{supply} = -12 V^{+}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	
		V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.9	2	
V _T	On-state voltage	I _{TM} = ±22.5 A	I _G = 50mA	(see Note 4)		±1.4	±1.7	V

† All voltages are with respect to Main Terminal 1.

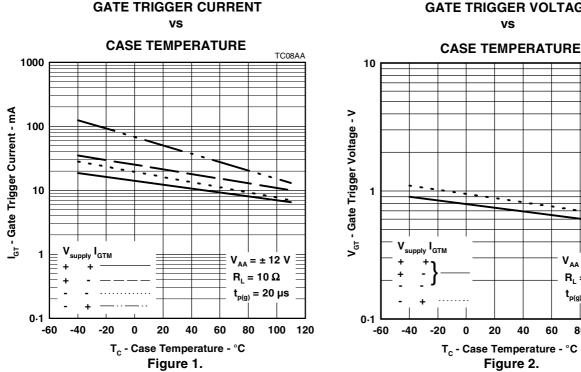
NOTE 4: This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

PRODUCT INFORMATION

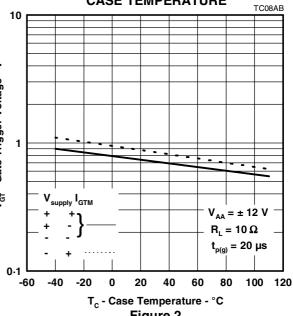
DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _H	Holding current	V _{supply} = +12 V† V _{supply} = -12 V†	l _G = 0 l _G = 0	Init' I _{TM} = 100 mA Init' I _{TM} = -100 mA		22 -12	40 -40	mA
IL.	Latching current	$V_{supply} = +12 V^{\dagger}$ $V_{supply} = -12 V^{\dagger}$	(see Note 5)				80 -80	mA
dv/dt	Critical rate of rise of off-state voltage	V _D = Rated V _D	I _G = 0	$T_{\rm C} = 110^{\circ}{\rm C}$		±400		V/µs
dv/dt _(c)	Critical rise of commutation voltage	V_D = Rated V_D di/dt = 0.5 I _{T(RMS)} /ms		$T_{C} = 80^{\circ}C$ $I_{T} = 1.4 I_{T(RMS)}$	±1.2	±9		V/µs
di/dt	Critical rate of rise of on -state current	V _D = Rated V _D di _G /dt = 50 mA/µs	I _{GT} = 50 mA	T _C = 110°C		±100		A/µs


† All voltages are with respect to Main Terminal 1.

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu$ s, $t_r = \le 15 \ n$ s, $f = 1 \ kHz$.


thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.9	°C/W
R _{0JA}	Junction to free air thermal resistance			62.5	°C/W

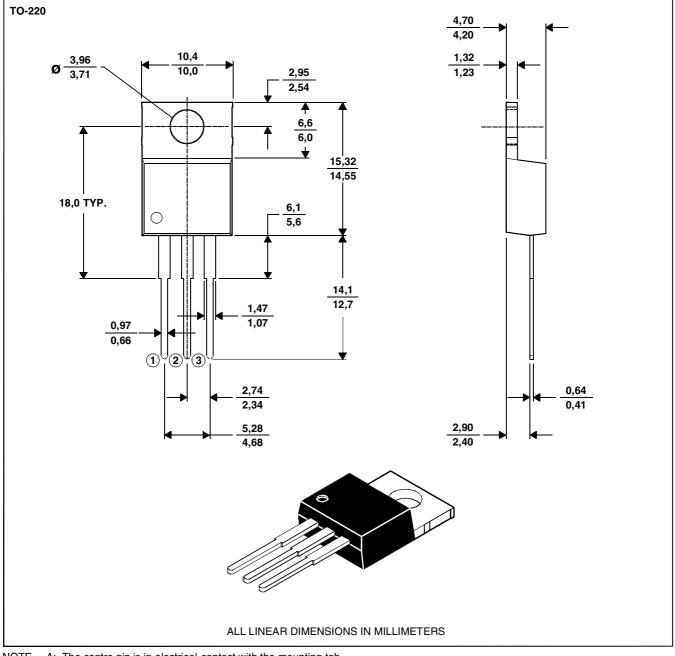
TYPICAL CHARACTERISTICS

GATE TRIGGER VOLTAGE

PRODUCT INFORMATION

> DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS


PRODUCT INFORMATION

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE A: The centre pin is in electrical contact with the mounting tab.