
Silicon Controlled Rectifiers Reverse Blocking Triode Thyristors

... designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

- Glass Passivated Junctions with Center Gate Geometry for Greater Parameter • Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 Volts

2N6400

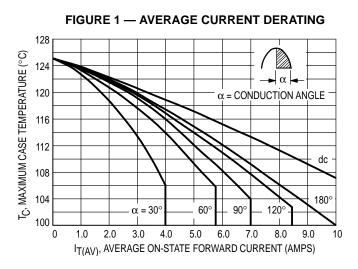
Rating	Rating Symbol		Unit	
Peak Repetitive Forward and Reverse Voltage(1) (Gate Open, $T_J = 25$ to 125° C) 2N6400 2N6401 2N6402 2N6403 2N6404 2N6404 2N6405	VDRM, VRRM	50 100 200 400 600 800	Volts	
RMS On–State Current (T _C = 90°C)	IT(RMS)	16	Amps	
Average On-State Current	IT(AV)	10	Amps	
Peak Non-Repetitive Forward Surge Current (1/2 Cycle, Sine Wave, 60 Hz, TJ = 125°C)	ITSM	160	Amps	
Circuit Fusing (t = 8.3 ms)	l ² t	145	A ² s	
Forward Peak Gate Power	PGM	20	Watts	
Forward Average Gate Power	P _{G(AV)}	0.5	Watt	
Forward Peak Gate Current	IGM	2	Amps	
Operating Junction Temperature Range	Тj	-40 to +125	°C	
Storage Temperature Range	T _{stg}	-40 to +150	°C	
HERMAL CHARACTERISTICS				
Characteristic	Symbol	Max	Unit	

	bol Max	Unit
Thermal Resistance, Junction to Case R ₀ J	C 1.5	°C/W

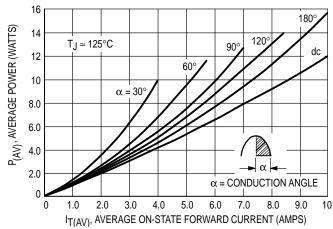
*Indicates JEDEC Registered Data.

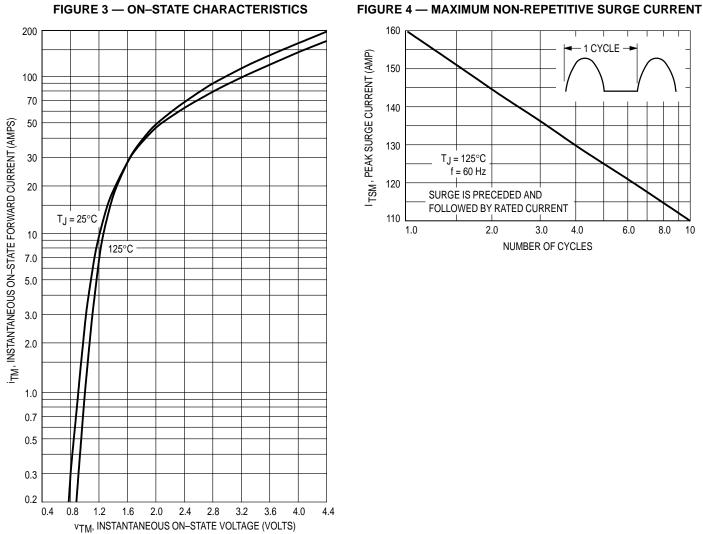
1. VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

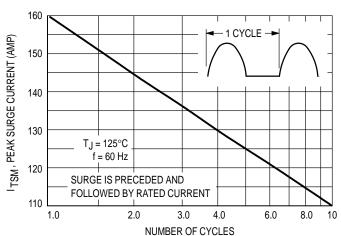
Devices listed in bold, italic are Motorola preferred devices. Preferred devices are Motorola recommended choices for future use and best overall value.



2N6400 thru 2N6405


ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted.)


Characteristic		Symbol	Min	Тур	Max	Unit
*Peak Forward or Reverse Blocking Current (V _{AK} = Rated V _{DRM} or V _{RRM} , Gate Open)	TJ = 25°C TJ = 125°C	IDRM, IRRM	_		10 2	μA mA
*Peak On–State Voltage (I _{TM} = 32 A Peak, Pulse Width ≤ 1 ms, Duty Cy	rcle ≤ 2%)	V _{TM}	—	—	1.7	Volts
*Gate Trigger Current (Continuous dc) (V _D = 12 Vdc, R _L = 50 Ohms)		IGT	—	5	30	mA
*Gate Trigger Voltage (Continuous dc) (V _D = 12 Vdc, R _L = 50 Ohms) (V _D = Rated V _{DRM} , R _L = 50 Ohms)	$T_{C} = 25^{\circ}C$ $T_{C} = -40^{\circ}C$ $T_{C} = +125^{\circ}C$	VGT	 	0.7 	1.5 2.5 —	Volts
*Holding Current (V _D = 12 Vdc, Gate Open)	$T_C = 25^{\circ}C$ $*T_C = -40^{\circ}C$	Н	—	6 —	40 60	mA
Turn-On Time (I _{TM} = 16 A, I _{GT} = 40 mAdc, V _D = Rated V _{DRN}	V)	tgt	—	1	_	μs
Turn-Off Time (I_{TM} = 16 A, I_R = 16 A, V_D = Rated V_{DRM})	T _C = 25°C T _J = +125°C	tq		15 35		μs
Critical Rate–of–Rise of Off-State Voltage (V _D = Rated V _{DRM} , Exponential Waveform)	TJ = +125°C	dv/dt	—	50	_	V/µs


*Indicates JEDEC Registered Data.

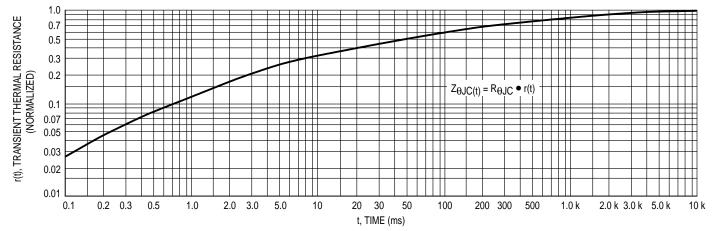
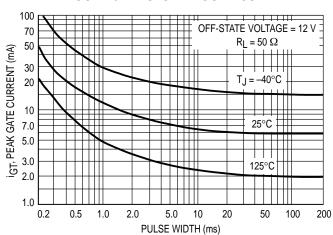
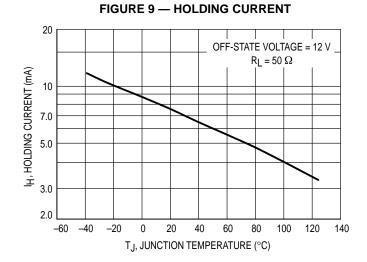
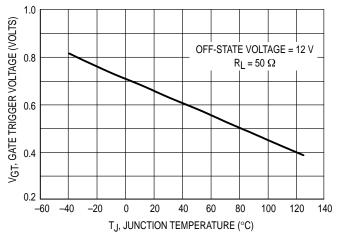

FIGURE 2 — MAXIMUM ON-STATE POWER DISSIPATION

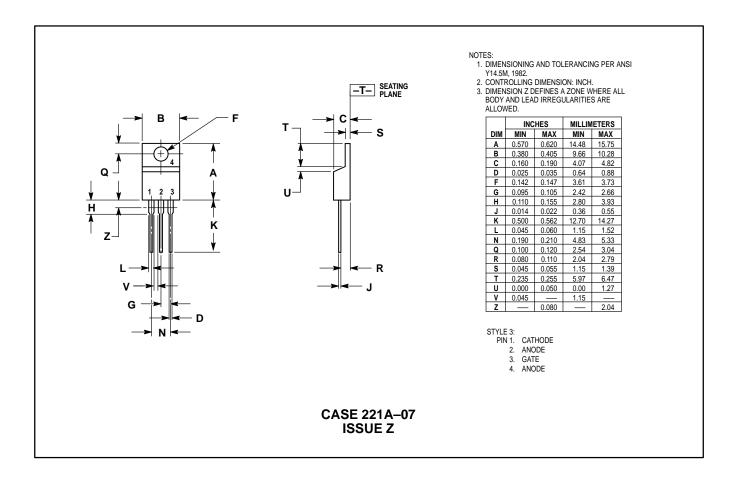
FIGURE 5 — THERMAL RESPONSE

TYPICAL CHARACTERISTICS


FIGURE 6 — PULSE TRIGGER CURRENT

20 OFF-STATE VOLTAGE = 12 V IGT, GATE TRIGGER CURRENT (mA) $R_L = 50 \Omega$ 10 7.0 5.0 3.0 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 TJ, JUNCTION TEMPERATURE (°C)


FIGURE 7 — GATE TRIGGER CURRENT

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and the application Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141,

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

 \diamond

Mfax is a trademark of Motorola, Inc.