$\propto N_{\varepsilon w} I_{\text {erssy }} S_{\varepsilon m i}$-Conductor $\mathfrak{P}_{\text {roduct }}, I_{n c}$.

20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

TELEPHONE: (973) 376-2922
(212) 227-6005

FAX: (973) 376-8960

BTW63 SERIES

FAST TURN-OFF THYRISTORS

Glass-passivated, asymmetrical, fast turn-off, forward blocking thyristors (ASCR) in TO-48 envelopes, suitable for operation in fast power inverters. For reverse-blocking operation use with a series diode, for reverse-conducting operation use with an anti-parallel diode.

QUICK REFERENCE DATA

Repetitive peak off-state voltage	VDRM	BTW63-600R		800R	1000R	
		max.	600	800	1000	V
Average on-state current	$I_{\text {T }}(\mathrm{AV})$	max.		25		A
Repetitive peak on-state current	ITRM	max.		250		A
Circuit-commutated turn-off time						
suffix K	${ }^{t}$	$<$		4		$\mu \mathrm{s}$
suffix N	t_{q}	$<$		6		$\mu \mathrm{s}$
suffix P	t_{q}	$<$		8		$\mu \mathrm{s}$

MECHANICAL DATA Dimensions in mm

Net mass: 14 g
Diameter of clearance hole: max. 6.5 mm Accessorias supplied on request

Supplied with device: 1 nut, 1 lock washer.
Torque on nut: $\min .1 .7 \mathrm{Nm}(17 \mathrm{~kg} \mathrm{~cm})$
max. $3.5 \mathrm{Nm}(35 \mathrm{~kg} \mathrm{~cm})$
Nut dimensions across the flats: 11.1 mm

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

BTW63 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

OPERATING NOTE

The terminals should be neither bent nor twisted; they should be soldered into the circuit so that there is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.

BTW63 SERIES

CHARACTERISTICS

Anode to cathode

Or-state voltage
$I_{T}=50 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Off-state current
$V_{D}=V_{\text {Dmax }} ; T_{j}=125^{\circ} \mathrm{C}$
Holding current: $T_{j}=25^{\circ} \mathrm{C}$

V_{T}	$<$	2.6	V^{*}
I_{D}	$<$	6.0	mA
I_{H}	$<$	400	mA
$V_{G T}$	$>$	2.0	V
$I_{G T}$	$>$	250	mA

Gate to cathode

Voltage that will trigger all devices $V_{D}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Current that will trigger all devices
$V_{D}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
GT
50
mA

Switching characteristics (see Fig.5)

Circuit commutated turn-off time
$d V_{D} / d t=500 \mathrm{~V} / \mu \mathrm{s}$ (linear to $V_{D R M m a x}$);
$R_{G K}=10 \Omega ; V_{G}=0 ; T_{j}=125{ }^{\circ} \mathrm{C}$;
when switched from $I_{T}=100 \mathrm{~A} ; \mathrm{t}_{\mathrm{P}}=150 \mu \mathrm{~s}$
$-\mathrm{dl}_{\mathrm{T}} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$
suffix K
suffix N
suffix P

t_{q}	$<$	6	$\mu \mathrm{~s}$
t_{q}	$<$	9	$\mu \mathrm{~s}$
t_{q}	$<$	12	$\mu \mathrm{~s}$
t_{q}	$<$	4	$\mu \mathrm{~s}$
t_{q}	$<$	6	$\mu \mathrm{~s}$
t_{q}	$<$	8	$\mu \mathrm{~s}$

Fig. 2 Circuit-commutated turn-off time definition.
"Measured under pulse conditions to avoid excessive dissipation.

BTW63 SERIES

Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.
$a=$ form factor $=\frac{I T(R M S)}{I T(A V)}$

