
Preliminary Information

AMD 64-Bit Technology

The AMD x86-64™ Architecture
Programmers Overview

Publication # 24108 Rev:C
Issue Date: January 2001

Preliminary Information

Trademarks

AMD, the AMD logo, x86-64, AMD Athlon, and combinations thereof are trademarks of Advanced Micro Devices,
Inc.

MMX is a trademark of Intel Corporation.

Windows NT is a trademark of Microsoft Corp.

Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.

© 2000 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms
and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims
any express or implied warranty, relating to its products including, but not
limited to, the implied warranty of merchantability, fitness for a particular
purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use
as components in systems intended for surgical implant into the body, or in
other applications intended to support or sustain life, or in any other applica-
tion in which the failure of AMD’s product could create a situation where per-
sonal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any
time without notice.

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Contents

Introduction. 1
Motivation for a 64-Bit Architecture . 1
Features of the x86-64™ Architecture . 2

Long Mode . 2
64-Bit Mode . 3
Compatibility Mode . 5
Legacy Mode . 5

Definitions. 6
Notation . 6
Registers. 7

Application Programming . 9
Overview . 9
Application Software Registers and Data Structures 10
CPUID . 11
Application Registers . 12

General-Purpose Registers (GPRs) . 12
Streaming SIMD Extension (SSE) Registers 15

Memory Organization . 15
Address Calculations in 64-Bit Mode. 15
FS and GS As Base of Address Calculation 16

Instruction-Set Conventions . 17
Address-Size and Operand-Size Prefixes. 17
REX Prefixes . 18
REX Prefix Fields . 20
Displacement . 24
Direct Memory-Offset MOVs . 24
Immediates. 24
RIP-Relative Addressing. 24
Default 64-Bit Operand Size . 26
Stack Pointer . 26
Branches . 27

System Programming . 30
Overview . 30
Canonical Address Form . 30
CPUID . 31
System Registers . 32

Extended Feature Enable Register (EFER) 32
Control Registers. 34
Descriptor Table Registers . 35
Debug Registers. 35

Enabling and Activating Long Mode . 36
iii

AMD 64-Bit Technology 24108C— January 2001

Preliminary Information
Processor Modes . 36
Activating Long Mode. 37
Virtual-8086 Mode . 40

Compatibility Mode: Support for Legacy Applications 40
Long-Mode Semantics . 40
Switching Between 64-Bit Mode and Compatibility Mode . . 40

Segmentation . 41
Code Segments . 41
Data and Stack Segments . 43
System Descriptors . 45

Virtual Addressing and Paging. 48
Virtual-Address and Physical-Address Size 48
Paging Data Structures . 49
Enhanced Legacy-Mode Paging . 55
CR2 and CR3 . 56
Address Translation. 57

Privilege-Level Transitions and Far Transfers 60
Call Gates . 60

RETF Allows Null SS Selector. 63
SYSCALL and SYSRET . 64
Task State Segments . 66

Interrupts . 69
Gate Descriptor Format . 69
Stack Frame . 71

Interrupt Stack Alignment. 71
IRET . 72

IRET Handling of SS:RSP . 72
IRET Allows Null SS Selector . 73

Stack Switching . 73
Task Priority . 75

Appendix A Integer Instructions in 64-Bit Mode . 77
A.1 General Rules for 64-Bit Mode. 77
A.2 Operation and Operand Size in 64-Bit Mode 78
A.3 Invalid Instructions in 64-Bit Mode . 105
A.4 Instructions with 64-Bit Default Operand Size in 64-Bit Mode.
107
A.5 Single-Byte INC and DEC Instructions in 64-Bit Mode 109
A.6 NOP in 64-Bit Mode. 109
A.7 Segment Override Prefixes in 64-Bit Mode 110
A.8 MOVSXD . 110
A.9 FXSAVE and FXRSTOR. 110
A.10 New Encodings for Control and Debug Registers 112
A.11 SwapGS Instruction. 112

SwapGS operation. 113
Possible Exceptions: . 113
SwapGS Instruction Encoding . 114
iv

24108C— January 2001 AMD 64-Bit Technology

Preliminary Information
SwapGS Example . 114
A.12 SSE2 conversion instructions . 115

Appendix B Long Mode Differences . 116

Appendix C Initialization Example . 118

Appendix D Implementation Considerations . 124
Address Size . 124
Operand Alignment . 124
CR8 Interactions with APIC . 125
Physical Address Fields in MSRs . 126
v

AMD 64-Bit Technology 24108C— January 2001

Preliminary Information
vi

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Introduction

AMD 64-bit technology includes the x86-64™ architecture,
which is a 64-bit extension of the x86 architecture. The x86-64
architecture supports legacy 16-bit and 32-bit applications and
operating systems without modification. It provides recompiled
64-bit applications and operating systems with these new
features:

■ 64-bit flat virtual addressing.

■ 8 new general-purpose registers (GPRs).

■ 8 new registers for streaming SIMD extensions (SSE).

■ 64-bit-wide GPRs and instruction pointer.

The x86-64 architecture has a legacy mode in which it supports
binary compatibility with existing operating systems and
applications, and a new mode in which it supports both the new
features for recompiled code as well as binary compatibility
with existing applications. The architecture also adds a new
instruction-pointer relative-addressing mode, uniform byte-
register addressing, and a fast interrupt-prioritizing
mechanism.

This document describes the new features of AMD’s x86-64
architecture and their differences from legacy x86 architecture.

Motivation for a 64-Bit Architecture

The need for a 64-bit x86 architecture is driven by applications
that address large amounts of virtual and physical memory,
such as high-performance servers, database management
systems, and CAD tools. These applications benefit from both
64-bit addresses and an increased number of registers.

The small number of registers available in the legacy x86
architecture also limits performance in computation-intensive
applications such as graphics transform and lighting, circuit
simulation, and scientific algorithms. Increasing the number of
registers provides a performance boost to many applications.
Introduction 1

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Features of the x86-64™ Architecture

The x86-64 architecture extends the legacy x86 architecture by
introducing two major features: a 64-bit extension called long
mode and register extensions.

Long Mode Long mode consists of two sub-modes: 64-bit mode and
compatibility mode. Compatibility mode supports binary
compatibility with existing 16-bit and 32-bit applications. In
addition to long mode, the architecture also supports a pure x86
legacy mode, which preserves binary compatibility not only with
existing 16-bit and 32-bit applications but also with existing 16-
bit and 32-bit operating systems.

Table 1 shows the supported operating modes.

Throughout this document, references to long mode refer to
both 64-bit mode and compatibility mode. If a function is specific
to either 64-bit mode or compatibility mode, then those specific
names are used instead of the name long mode.

Table 1. Operating Modes

Mode
Operating

System
Required

Application
Recompile
Required

Defaults1

 Address
Size
(bits)

Operand
Size
(bits)

Register
Extensions2

GPR
Width
(bits)

Long Mode3

64-Bit
Mode New

64-bit OS

yes 64

32

yes 64

Compatibility
Mode

no
32

no 32
16

Legacy Mode4
Legacy

32-bit or 16-
bit OS

no
32 32

no 32
16 16

1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions includes eight new GPRs and eight new XMM registers (also called SSE registers).
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.

Also, it does not support task switching.
4. Legacy mode supports x86 real mode, virtual-8086 mode, and protected mode.
2 Introduction

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
64-Bit Mode 64-bit mode supports the following new features:

■ 64-bit virtual addresses (implementations can have less).

■ Register extensions through a new prefix (REX):

- Adds eight GPRs (R8–R15).

- Widens GPRs to 64 bits.

- Adds eight 128-bit streaming SIMD extension (SSE)
registers (XMM8–XMM15).

■ 64-bit instruction pointer (RIP).

■ New RIP-relative data addressing mode.

■ Flat address space with single code, data, and stack space.

The default address size is 64 bits, and the default operand size
is 32 bits. The defaults can be overridden on an instruction-by-
instruction basis using prefixes. A new REX prefix is
introduced for specifying 64-bit operand size and the new
registers.

The mode is enabled by the operating system on an individual
code-segment basis. Because 64-bit mode supports a 64-bit
virtual-address space, it requires a 64-bit operating system and
tool chain. A few instruction opcodes and prefix bytes are
redefined to allow the register extensions and 64-bit
addressing. These differences are described in Appendix A,
"Integer Instructions in 64-Bit Mode"‚ on page 77, and in
Appendix B, "Long Mode Differences"‚ on page 116.
Introduction 3

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Register Extensions. 64-bit mode supports register extensions,
shown in Figure 1, through a new REX prefix. These extensions
add eight 64-bit GPRs (R8–R15), eight 128-bit streaming SIMD
extensions (SSE) registers (XMM8–XMM15), and widens all
GPRs to 64 bits.

The REX prefix also provides a new byte-register capability
that makes the least-significant byte of any GPR available for
byte operations. This results in a uniform set of byte, word,
dword, and qword registers better suited for a compiler’s
register allocation.

The instruction pointer is also widened to 64 bits.

Figure 1. Register Extensions

507.001.eps

EFLAGS

Flags
Register

RIP

Instruction Pointer

General-Purpose
Registers (GPRs)

Streaming SIMD
Extension (SSE) Registers

Multimedia Extension and
Floating-Point Registers

Legacy x86 Registers, supported in all modes

63 0 63 0 127 0

63 0

31 0

Register Extensions, supported in 64-Bit Mode

RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8
R9
R10
R11
R12
R13
R14
R15

MM0/ST0
MM1/ST1
MM2/ST2
MM3/ST3
MM4/ST4
MM5/ST5
MM6/ST6
MM7/ST7

XMM0
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7
XMM8
XMM9
XMM10
XMM11
XMM12
XMM13
XMM14
XMM15
4 Introduction

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
RIP-Relative Data Addressing. In 64-bit mode, the architecture also
supports data addressing relative to the 64-bit instruction
pointer (RIP). The legacy x86 architecture supports IP-relative
addressing only in control-transfer instructions. The 64-bit
mode’s RIP-relative addressing improves the efficiency of
position-independent code and code that addresses global data.

Compatibility Mode Compatibility mode allows operating systems to implement
binary compatibility with existing 16-bit and 32-bit x86
applications. It allows these applications to run, without
recompilation, under a 64-bit operating system in long mode, as
shown in Table 1 on page 2.

In compatibility mode, applications can only access the first
4GBytes of virtual-address space. Standard x86 instruction
prefixes toggle between 16-bit and 32-bit address and operand
sizes.

As with 64-bit mode, compatibility mode is enabled by the
operating system on an individual code-segment basis. Unlike
64-bit mode, however, x86 segmentation functions normally,
using 16-bit or 32-bit protected-mode semantics. From the
application’s viewpoint, compatibility mode looks like a legacy
x86 protected-mode environment. From the operating system’s
viewpoint, address translation, interrupt and exception
handling, and system data structures use the 64-bit long mode
mechanisms.

Legacy Mode Legacy mode is completely compatible with existing 32-bit
implementations of the x86 architecture.
Introduction 5

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Definitions

Many of the following definitions assume an in-depth
knowledge of the legacy x86 architecture.

Notation 16-bit mode Legacy mode or compatibility mode in which a
16-bit address size is active.

32-bit mode Legacy mode or compatibility mode in which a
32-bit address size is active.

64-bit mode 64-bit mode, which has a 64-bit address size.

#GP(0) General-protection exception (#GP) with error
code of 0.

CPL Current privilege level.

CR0.PE=1 The PE bit of the CR0 register has a value of 1.

dword 32 bits, four bytes.

EFER.LME=0 The LME bit of the EFER register has a value of
0.

effective address size
The address size for the current instruction
after accounting for default address size and
any address-size override prefix.

effective operand size
The operand size for the current instruction
after accounting for default operand size and
any operand-size override prefix.

FF/0 FF is first byte of an opcode, and /0 means that
a sub-field in the second byte is zero.

IGN Ignore. Field is ignored.

IMP Implementation dependent.

Legacy The legacy x86 architecture.

ModRM A byte following an instruction opcode that
specifies address calculation based on mode
(mod), register (r), and memory (m).

MBZ Must be zero. If not zero, a general-protection
exception (#GP) occurs.
6 Introduction

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
PAE Physical-address extensions.

PCR Processor control region.

qword 64 bits, eight bytes.

RAZ Read as zero (0).

REX A new instruction prefix that specifies a 64-bit
operand size and provides access to additional
registers.

SBZ Should be zero (0). Non-zero values produce
unpredictable results.

SIB A byte following an instruction opcode that
specifies address calculation based on scale (S),
index (I), and base (B).

SIMD Single instruction, multiple data.

SSE Streaming SIMD extensions.

TEB Thread environment block.

word 16 bits, two bytes.

Registers eAX–eSP The AX, BX, CX, DX, DI, SI, BP, SP registers or
the EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP
registers.

EBP Extended base pointer.

BP Base pointer.

CRn Control register number n.

CS Code segment.

EFER Extended features enable register.

EFLAGS Extended flags register.

EIP Extended instruction pointer.

GDTR Global descriptor table register.

GPRs General-purpose registers. For the 16-bit data
size, these are AX, BX, CX, DX, DI, SI, BP, SP.
For the 32-bit data size, these are EAX, EBX,
ECX, EDX, EDI, ESI, EBP, ESP. For the 64-bit
Introduction 7

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8–R15.

IDTR Interrupt descriptor table register.

IP Instruction pointer.

LDTR Local descriptor table register.

MSR Model-specific register.

RAX–RSP The AX, BX, CX, DX, DI, SI, BP, SP registers, or
the EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP
registers, or the RAX, RBX, RCX, RDX, RDI,
RSI, RBP, RSP registers.

RAX 64-bit version of EAX register.

RBP 64-bit version of EBP register.

RBX 64-bit version of EBX register.

RCX 64-bit version of ECX register.

RDI 64-bit version of EDI register.

RDX 64-bit version of EDX register.

RIP 64-bit instruction pointer.

RSI 64-bit version of ESI register.

RSP 64-bit version of ESP register.

rSP Stack pointer. The “r” variable should be
replaced by nothing for 16-bit stack size, “E”
for 32-bit stack size, or “R” for 64-bit stack size.

SP Stack pointer.

SS Stack segment.

TPR Task priority register, a new register introduced
in the x86-64 architecture to speed interrupt
management.

TR Task register.

TSS Task state segment.
8 Introduction

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Application Programming

Overview

This section describes the application register set, instruction-
set conventions, memory addressing, and application-relevant
aspects of procedure-call conventions. It is intended primarily
for experienced x86 programmers writing applications,
compilers, or assemblers. System programmers writing
privileged code should also read this section.

Additional application-programming information can be found
in the following appendixes:

■ Appendix A, "Integer Instructions in 64-Bit Mode"‚ on
page 77.

■ Appendix B, "Long Mode Differences"‚ on page 116.

■ Appendix D, "Implementation Considerations"‚ on
page 124.
Application Programming 9

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Application Software Registers and Data Structures

Table 2 compares the registers and data structures visible to
application software in 64-bit mode with those visible in the
legacy x86 architecture. The legacy x86 values also apply to the
x86-64 architecture compatibility and legacy modes. Gray
shading indicates differences between the architectures. The
register differences (not including stack-width difference)
represent what is called the register extensions of the x86-64
architecture.

Table 2. Application-Software Differences in Registers and Data Structures

Software-Visible Register
or Data Structure

Legacy and Compatibility
Modes 64-Bit Mode

Name Number Size
(bits) Name Number Size

(bits)

General-Purpose Registers

EAX, EBX,
ECX, EDX,
EBP, ESI,
EDI, ESP

8 32

RAX, RBX,
RCX, RDX,
RBP, RSI,
RDI, RSP,

R8-15

16 64

Floating-Point Registers1 ST0-7 8 80 ST0-7 8 80

Multimedia Extension Registers1 MM0-7 8 64 MM0-7 8 64

Streaming SIMD Extension Registers XMM0-7 8 128 XMM0-15 16 128

Instruction Pointer EIP 1 32 RIP 1 64

Flags EFLAGS 1 32 EFLAGS 1 32

Stack Width — 16 or 32 — 64

1. Legacy ST and MMX™ technology registers share the same register space.
10 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
CPUID

Application software can use the CPUID instruction to
determine processor features, such as whether the x86-64
architecture’s long mode is supported by the processor. To do
this, software typically loads a function code into the EAX
register and executes the CPUID instruction. Processor feature
information is returned in the EAX, EBX, ECX, and EDX
registers.

Loading EAX with the function code 8000_0001h causes the
CPUID instruction to return the extended feature flags shown
in Table 3 to EAX. If bit 29 is set to 1, long mode is available.

Table 3. Long-Mode Feature Flag Returned to EAX for CPUID 8000_0001h

Bit Feature

29 LM Long Mode
Application Programming 11

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Application Registers

Figure 1 on page 4 shows the application registers, including
both the legacy x86 register set and the register extensions
available in 64-bit mode. Only the GPR and XMM registers are
extended in 64-bit mode. The floating-point and MMX™
technology registers are not extended.

General-Purpose
Registers (GPRs)

Legacy-Mode and Compatibility-Mode GPRs. In compatibi l i ty and
legacy modes, the GPRs consist only of the eight legacy
registers. When the operand size is 32-bit, the registers are
EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP. When the operand
size is 16-bit, the registers are AX, BX, CX, DX, DI, SI, BP, SP.
All legacy rules apply for determining operand size.

64-Bit Mode GPRs. In 64-bit mode, the GPRs are 64 bits and eight
additional GPRs are available. Their names are RAX, RBX,
RCX, RDX, RDI, RSI, RBP, RSP, and the new R8–R15 registers.

Figure 2 shows the GPRs in 64-bit mode.

The default operand size in 64-bit mode is 32 bits, which gives
access to the EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. To access the full 64-bit operand size, an instruction
must contain a new REX prefix byte. To access 16-bit operand
sizes, an instruction must contain an operand-size prefix (66h).
These prefix bytes are described in "Address-Size and Operand-
Size Prefixes" on page 17.

64-bit mode provides a uniform set of byte, word, dword, and
qword registers better suited for register allocation by
compilers. This view of the byte registers is enabled by REX
prefixes, as described in "REX Prefixes" on page 18.

The black shading in Figure 2 indicates legacy high-byte
registers, with the register-number encoding shown in
parentheses. The dark gray shading in Figure 2 indicates new
byte registers within legacy registers. Access to these new byte
registers requires a REX instruction prefix. An instruction
cannot reference both a legacy high-byte register and a new
byte register at the same time. However, an instruction can
reference a legacy low-byte register and a new byte register at
the same time.
12 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Figure 2. GPRs in 64-Bit Mode

63 32 31 16 15 8 7 0

0

Not Modified AH(4) AL
Not Modified AX

Zero-Extension EAX
RAX

1

CH(5) CL
CX

Zero-Extension ECX
RCX

2

DH(6) DL
DX

Zero-Extension EDX
RDX

3

BH(7) BL
BX

Zero-Extension EBX
RBX

4

SPL
SP

Zero-Extension ESP
RSP

5

BPL
BP

Zero-Extension EBP
RBP

6

SIL
SI

Zero-Extension ESI
RSI

7

DIL
DI

Zero-Extension EDI
RDI

8

R8B
R8W

Zero-Extension R8D
R8

15

R15B
R15W

Zero-Extension R15D
R15

Re
gi

st
er

 N
um

be
r E

nc
od

in
g

…

Application Programming 13

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Zero-Extension of Results. In 64-bit mode, when performing 32-bit
operations with a GPR destination, the processor zero-extends
the 32-bit result into the full 64-bit destination. 8-bit and 16-bit
operations on GPRs preserve all unwritten upper bits of the
destination GPR. This is consistent with legacy 16-bit and 32-bit
semantics for partial-width results.

The results of 8-bit, 16-bit, and 32-bit operations should be
explicitly sign-extended to the full width before use in 64-bit
address calculations.

The following four code examples show how 64-bit, 32-bit, 16-
bit, and 8-bit adds work. In these examples, “48” is a REX
prefix specifying 64-bit operand size, and “01C3” and “00C3”
are the opcode and ModRM bytes of each instruction. See
"REX Prefixes" on page 18 for a description of the REX prefix.

Example 1: 64-bit add

Before:RAX =0002_0001_8000_2201
 RBX =0002_0002_0123_3301

 48 01C3 ADD RBX,RAX ;48 is a REX prefix for size.

Result:RBX = 0004_0003_8123_5502

Example 2: 32-bit add

Before:RAX =0002_0001_8000_2201
 RBX =0002_0002_0123_3301

 01C3 ADD EBX,EAX ;32-bit add

 Result:RBX = 0000_0000_8123_5502
 (32-bit result is zero extended)

Example 3: 16-bit add

Before:RAX =0002_0001_8000_2201
 RBX =0002_0002_0123_3301

 66 01C3 ADD BX,AX ;66 is 16-bit size override

 Result:RBX = 0002_0002_0123_5502
 (bits 63:16 are preserved)
14 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Example 4: 8-bit add

Before:RAX =0002_0001_8000_2201
 RBX =0002_0002_0123_3301

 00C3 ADD BL,AL ;8-bit add

 Result:RBX = 0002_0002_0123_3302
 (bits 63:08 are preserved)

Preservation of GPR High 32 Bits Across Mode Switches. The processor
does not preserve the upper 32 bits of the 64-bit GPRs across
switches from 64-bit mode to compatibility or legacy modes.
When using 32-bit operands in compatibility or legacy mode,
the high 32 bits of GPRs are undefined. Software must not rely
on these undefined bits, because they can change on a cycle-to-
cycle basis within a given implementation.

Streaming SIMD
Extension (SSE)
Registers

In compatibility and legacy modes, the SSE registers consist of
the eight 128-bit legacy registers, XMM0–XMM7. In 64-bit
mode, eight additional 128-bit SSE registers are available,
XMM8–XMM15. These are part of the register extensions
illustrated in Figure 1 on page 4. Access to these registers is
controlled on an instruction-by-instruction basis using a REX
instruction prefix, as described in "REX Prefixes" on page 18.

Memory Organization

Address Calculations
in 64-Bit Mode

Effective Addresses. In 64-bit mode if there is no address-size
override, the size of effective address calculations is 64 bits. An
effective-address calculation uses 64-bit base and index
registers and sign-extends displacements to 64 bits. Due to the
flat address space in 64-bit mode, virtual addresses are equal to
effective addresses. (For an exception to this general rule, see
"Special Treatment of FS and GS Segments" on page 43.)
Application Programming 15

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Instruction Pointer. In long mode, the instruction pointer is
extended to 64 bits to support 64-bit code offsets. This 64-bit
instruction pointer is called RIP. Figure 3 shows the relationship
between RIP, EIP, and IP.

Figure 3. Instruction Pointer

Displacement and Immediates. General ly, di splacements and
immediates in 64-bit mode are not extended to 64 bits. They are
still limited to 32 bits and sign-extended during effective-
address calculations. In 64-bit mode, however, support is
provided for some 64-bit displacement and immediate forms of
the MOV instruction. See "Displacement" on page 24 and
"Immediates" on page 24 for more information on this.

Zero Extending 16-Bit and 32-Bit Addresses. All 16 -bit and 32 -bi t
address calculations are zero-extended in long mode to form 64-
bit addresses. Address calculations are first truncated to the
effective address size of the current mode (64-bit mode or
compatibility mode), as overridden by any address-size prefix.
The result is then zero-extended to the full 64-bit address width.

Because of this, 16-bit and 32-bit applications running in
compatibility mode can access only the low 4GBytes of the long-
mode virtual-address space. Likewise, a 32-bit address
generated in 64-bit mode can access only the low 4GBytes of the
long-mode virtual-address space.

FS and GS As Base of
Address Calculation

The FS and GS segment-base registers can be used as base
registers for address calculation, as described in "Special
Treatment of FS and GS Segments" on page 43.

63 32 31 16 15 0
IP

EIP
RIP
16 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Instruction-Set Conventions

Address-Size and
Operand-Size
Prefixes

Address-Size Overrides. In 64-bit mode, the default address size is
64 bits and the default operand size is 32 bits. As in legacy
mode, these defaults can be overridden using instruction
prefixes. The address-size and operand-size prefixes allow
mixing of 32-bit and 64-bit data and addresses on an instruction-
by-instruction basis.

Table 4 shows the instruction prefixes for address-size overrides
in all operating modes. In 64-bit mode, the default address size
is 64 bits. The address size can be overridden to 32 bits by using
the address-size prefix. 16-bit addresses are not supported in 64-
bit mode. In compatibility and legacy mode, address sizes
function the same as in x86 legacy architecture.

Table 4. Address-Size Overrides

Mode Default Address
Size (Bits)

Effective Address
Size (Bits)

Address-Size
Prefix (67h)1

Required?

Long Mode

64-Bit
Mode

64
64 no

32 yes

Compatibility
Mode

32
32 no

16 yes

16
32 yes

16 no

Legacy
Mode

32
32 no

16 yes

16
32 yes

16 no

1. “no’ indicates the default address size.
Application Programming 17

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Operand-Size Overrides. Table 5 shows the instruction prefixes for
operand-size overrides in all operating modes. In 64-bit mode,
the default operand size is 32 bits. A REX prefix (see "REX
Prefixes" on page 18) can specify a 64-bit operand size.
Software can use an operand-size (66h) prefix to toggle to 16-bit
operand size. The REX prefix takes precedence over the
operand-size (66h) prefix.

REX Prefixes REX prefixes are a new family of instruction-prefix bytes used
in 64-bit mode to:

■ Specify the new GPRs and SSE registers shown in Figure 1
on page 4.

■ Specify a 64-bit operand size.

■ Specify extended control registers (used by system
software).

Not all instructions require a REX prefix. The prefix is
necessary only if an instruction references one of the extended

Table 5. Operand-Size Overrides

Mode
Default

Operand Size
(Bits)

Effective
Operand Size

(Bits)

Instruction Prefix

66h1 REX

Long Mode

64-Bit
Mode

32

64 x yes

32 no no

16 yes no

Compatibility
Mode

32
32 no

Not
Applicable

16 yes

16
32 yes

16 no

Legacy
Mode

32
32 no

16 yes

16
32 yes

16 no

1. “no’ indicates the default operand size. “x” means don’t care.
18 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
registers or uses a 64-bit operand. If a REX prefix is used when
it has no meaning, it is ignored.

Number and Position. An instruction can have only one REX
prefix. This prefix, if used, must immediately precede the
opcode byte or the two-byte opcode escape prefix (if used) of an
instruction. Any other placement of a REX prefix is ignored.
The legacy instruction-size limit of 15 bytes still applies to
instructions that contain a REX prefix.

Figure 4 shows how a REX prefix fits within the byte-order of
instructions.

Figure 4. Instruction Byte Order

Encoding. x86 instruction formats specify up to three registers by
using 3-bit fields in the instruction encoding, depending on the
format:

■ ModRM: the reg and r/m fields of the ModRM byte.

■ ModRM with SIB: the reg field of the ModRM byte and the
base and index fields of the SIB (scale, index, base) byte.

■ Instructions without the ModRM: the reg field of the opcode.

In 64-bit mode, these fields and formats are not altered.
Instead, the bits needed to extend each field for accessing the
additional registers are provided by the new REX prefixes.

507.003.eps

Legacy
Prefix

REX
Prefix

Escape
Prefix Opcode

Instruction Length £ 15 Bytes

MODRM SIB Displacement Immediate
Application Programming 19

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
REX Prefix Fields REX prefixes are a set of sixteen values that span one row of
the main opcode map and occupy entries 40h to 4Fh. Table 6
and Figure 5 show the prefix fields and their uses.

REX.W: Operand Width. Setting the REX.W bit specifies a 64-bit
operand size. Like the existing 66h operand size prefix, the
REX 64-bit operand size override has no effect on byte
operations. For non-byte operations, the REX operand-size
override takes precedence over the 66h prefix. If a 66h prefix is
used together with a REX prefix with bit 3 set to 1, the 66h
prefix is ignored. However, if a 66h prefix is used together with
a REX prefix with REX.W cleared to 0, the 66h prefix is not
ignored and the operand size becomes 16 bits.

REX.R: Register. The REX.R bit modifies the ModRM reg field
when that field encodes a GPR or SSE register. REX.R does not
modify ModRM reg when that field specifies other registers or
opcodes. REX.R is ignored in such cases.

REX.X: Index. The REX.X bit modifies the SIB index field.

REX.B: Base. The REX.B bit either modifies the base in the
ModRM r/m field or SIB base field, or modifies the opcode reg
field used for accessing GPRs, control registers, or debug
registers.

Encoding Examples. Figure 5 shows four examples of how the R, X,
and B bits of REX prefixes are concatenated with fields from
the ModRM byte, SIB byte, and opcode to specify register and
memory addressing. The R, X, and B bits are described in Table
6.

Table 6. REX Prefix Fields

Field Name Bit Position Definition

— 7:4 0100

W 3 0 = Default operand size
1 = 64-bit operand size

R 2 High extension of the ModRM reg field.

X 1 High extension of the SIB index field.

B 0 High extension of the ModRM r/m field, SIB
base field, or opcode reg field.
20 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information

Figure 5. Encoding Examples of REX-Prefix R, X, and B Bits

507.002.eps

REX Prefix

Case 1: Register-Register Addressing (No Memory Operand)

REX.X is not used

REX.X is not used

4WRXB
opcode

ModRM Byte
mod reg r/m

mod reg r/m

mod reg r/m

rrr11 bbb

REX Prefix

Case 2: Memory Addressing Without an SIB Byte

Rrrr

Rrrr Bbbb

4WRXB
opcode

ModRM Byte

rrr!11 bbb

Bbbb

4
4

4
4

REX Prefix

Case 3: Memory Addressing With an SIB Byte

Rrrr

4WRXB
opcode

ModRM Byte

rrr!11 100

SIB Byte
scale index base

xxxbb bbb

BbbbXxxx

44
4

REX.R is not used
REX.X is not used

REX Prefix

Case 4: Register Operand Coded in Opcode Byte

Bbbb

4WRXB

opcode reg

bbb

4

ModRM reg field != 100
Application Programming 21

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Byte-Register Addressing. In the legacy architecture, the byte
registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2 on page 13) are encoded in the ModRM reg or r/m field
or opcode reg field as registers 0 through 7. The REX prefix
provides an additional byte-register addressing capability that
makes the least-significant byte of any GPR available for byte
operations. This provides a uniform set of byte, word, dword,
and qword registers better suited for register allocation by
compilers.

Special Encodings for Registers. Readers who need to know the
details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special
meaning for regis ter encodings . For some of these
combinations, the instruction fields expanded by the REX
prefix are not decoded (treated as don’t cares), thereby creating
aliases of these encodings in the extended registers. Table 7
describes how each of these cases behaves.

Implications for INC and DEC Instructions. The REX prefix values are
taken from the 16 single-byte INC register and DEC register
instructions, one for each of the eight GPRs. The functionality
of these INC and DEC instructions is still available, however,
using the ModRM forms of those instructions (opcodes FF/0 and
FF/1).
22 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Table 7. Special REX Encodings for Registers

ModRM and SIB
Encodings

Meaning in Legacy and
Compatibility Modes

Implications in Legacy
and Compatibility Modes

Additional REX
Implications

ModRM Byte:

• mod ! = 11

• r/m1 == b100 (ESP)

SIB byte is present. SIB byte required for ESP-
based addressing.

REX prefix adds a fourth bit
(B), which is not decoded
(don’t care). Therefore, SIB
byte also required for R12-
based addressing.

ModRM Byte:

• mod == 00

• r/m1 == b101 (EBP)

Base register is not used.

Using EBP without
displacement must be
done via mod = 01 with a
displacement of 0.

REX prefix adds a fourth bit
(b), which is not decoded
(don’t care). Therefore,
using RBP or R13 without
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:

• index1 == 0100 (ESP)
Index register is not used. ESP cannot be used as an

index register.

REX prefix adds a fourth bit
(X), which is decoded.
Therefore, there are no
additional implications.
The expanded index field is
used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:

• base1 == b101 (EBP)

Base register is unused if
mod = 00.

Base register depends on
mod encoding.

REX prefix adds a fourth bit
(b), which is not decoded
(don’t care). Therefore,
using RBP or R13 without
displacement must be
done via mod = 01 with a
displacement of 0.

1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM
r/m, SIB index, and SIB base fields. The lower-case “b” for ModRM r/m indicates that the bit is not
decoded (don’t care).
Application Programming 23

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Displacement Addressing in 64-bit mode uses the existing 32-bit ModRM and
SIB encodings. In particular, the ModRM and SIB displacement
sizes do not change. They remain either 8 or 32 bits and are
sign-extended to 64 bits.

Direct Memory-
Offset MOVs

In 64-bit mode, the direct memory-offset forms of the MOV
instruction, shown in Table 8, are extended to specify a full 64-
bit immediate absolute address, called a moffset.

No prefix is needed to specify this 64-bit memory offset. For
these MOV instructions, the size of the memory offset follows
the address-size default, which is 64 bits in 64-bit mode.

Immediates In 64-bit mode, the maximum size of immediate operands
remains 32 bits, except that 64-bit immediates can be moved
into a 64-bit GPR.

When the operand size is 64 bits, the processor sign-extends all
immediates to 64 bits prior to using them. Support for 64-bit
immediate operands is accomplished by expanding the
semantics of the existing move (MOV reg, imm16/32)
instructions. These instructions—opcodes B8h–BFh—move a
16-bit or 32-bit immediate (depending on the effective operand
size) into a GPR. When the effective operand size is 64 bits (i.e.,
in 64-bit mode) these instructions can be used to load an
immediate into a GPR. A REX prefix is needed to override the
32-bit default to a 64-bit operand size. For example:

48 B8 8877665544332211 MOV RAX, 1122334455667788h

RIP-Relative
Addressing

A new addressing form, RIP-relative (instruction pointer-
relative) addressing, is implemented in 64-bit mode. The
effective address is formed by adding the displacement to the
64-bit RIP of the next instruction.

Table 8. Direct Memory-Offset (moffset) Forms of MOV

Opcode Instruction

A0 MOV AL,moffset

A1 MOV EAX,moffset

A2 MOV moffset,AL

A3 MOV moffset,EAX
24 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
In legacy x86 architecture, addressing relative to the
instruction pointer is available only in control-transfer
instructions. In the 64-bit mode, an instruction that uses
ModRM addressing can use RIP-relative addressing. The
feature is particularly useful for addressing data in position-
independent code and for code that addresses global data.

Without RIP-relative addressing, ModRM instructions address
memory relative to zero. With RIP-relative addressing, ModRM
instructions can address memory relative to the 64-bit RIP
using a signed 32-bit displacement. This provides an offset
range of ±2GB from the RIP.

Programs usually have many references to data, especially
global data, that are not register-based. To load such a program,
the loader typically selects a location for the program in
memory and then adjusts the program’s references to global
data based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

Encoding. Table 9 shows the ModRM and SIB encodings for RIP-
relative addressing. Redundant forms of 32-bit displacement-
only addressing exist in the current ModRM and SIB encodings.
There is one ModRM encoding and several SIB encodings. RIP-
relative addressing is encoded using one of the redundant
forms. In 64-bit mode, the ModRM Disp32 (32-bit displacement)
encoding is re -defined to be RIP+Disp32 rather than
displacement-only.

Table 9. RIP-Relative Addressing Encoding

ModRM and SIB
Encodings

Meaning in Legacy and
Compatibility Modes Meaning in 64-bit Mode Additional 64-bit

Implications

ModRM Byte:

• mod == 00

• r/m == 101 (none)

Disp32 RIP + Disp32

Zero-based (normal)
displacement addressing
must use SIB form (see
next row).

SIB Byte:

• base == 101 (none)

• index ==100 (none)

• scale ==0, 1, 2, 4

If mod = 00, Disp32 Same as Legacy None
Application Programming 25

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Effect of REX Prefix on RIP-Relative Addressing. ModRM encoding for
RIP-relative addressing does not depend on a REX prefix. In
particular, the r/m encoding of 101, used to select RIP-relative
addressing, is not affected by the REX prefix. For example,
selecting R13 (REX.B=1, r/m=101) with mod=00 still results in
RIP-relative addressing.

The 4-bit r/m field of ModRM is not fully decoded. Therefore, in
order to address R13 with no displacement, software must
encode it as R13+0 using a 1-byte displacement of zero.

Effect of Address-Size Prefix on RIP-relative addressing. RIP-relat ive
addressing is enabled by 64-bit mode, not by a 64-bit address-
size. Conversely, use of the address-size prefix ("Address-Size
and Operand-Size Prefixes" on page 17) does not disable RIP-
relative addressing. The effect of the address-size prefix is to
truncate and zero-extend the computed effective address to 32
bits, like any other addressing mode.

Default 64-Bit
Operand Size

In 64-bit mode, two groups of instructions have a default
operand size of 64 bits and thus do not need a REX prefix for
this operand size:

■ Near branches. See "Near Branches" on page 27 for details.

■ All instructions, except far branches, that implicitly
reference the RSP. See "Stack Pointer" on page 26 for
details.

See Appendix A, "Integer Instructions in 64-Bit Mode"‚ on
page 77 for a complete list of the instructions affected and their
opcodes.

Stack Pointer In 64-bit mode, the stack pointer size is always 64 bits. The stack
size is not controlled by a bit in the SS descriptor, as it is in
compatibility or legacy mode, nor can it be overridden by an
instruction prefix. Address-size overrides are ignored for
implicit stack references.

Except far branches, all instructions, that implicitly reference
the RSP default to 64-bit operand size in 64-bit mode. The
instructions affected include PUSH, POP, PUSHF, POPF,
ENTER, and LEAVE. Pushes and pops of 32-bit stack values are
not possible in 64-bit mode with these instructions. 16-bit
26 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
pushes and pops are supported by using the 66h operand- size
prefix.

The 64-bit default operation-size eliminates the need for a REX
prefix to precede these instructions when registers RAX–RSP
are used as operands. A REX prefix is still required if the R8–
R15 registers are used as operands, because the prefix is
required to address the new extended registers.

Branches The long-mode architecture expands two branching
mechanisms to accommodate branches in the full 64-bit virtual-
address space:

■ In 64-bit mode, near-branch semantics are redefined.

■ In both 64-bit and compatibility modes, a 64-bit call-gate
descriptor is defined for far calls.

Near Branches. In 64-bit mode, the operand size for all near
branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to
64 bits. Therefore, these instructions update the full 64-bit RIP
without the need for a REX operand-size prefix.

The following aspects of near branches are controlled by the
effective operand size:

■ Truncation of the instruction pointer.

■ Size of a stack pop or push, resulting from a CALL or RET.

■ Size of a stack-pointer increment or decrement, resulting
from a CALL or RET.

■ Indirect-branch operand size.

In 64-bit mode, all of the above actions are forced to 64 bits
regardless of any operand size prefixes. Any operand size prefix
is silently ignored. However, the size of the displacement field
for relative branches is still limited to 32 bits.

The address size of near branches is not forced in 64-bit mode.
The address size affects the size of rCX used for JCXZ and
LOOP, and the address calculation for memory indirect
branches. Such addresses are 64 bits by default, but they can be
overridden to 32 bits by an address size prefix.

Far Branches Through Long-Mode Call Gates. Software typically uses
far branches to change privilege levels. The legacy x86
architecture provides the call-gate mechanism to allow software
to branch from one privilege level to another, although call
Application Programming 27

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
gates can also be used for branches that do not change privilege
levels. When call gates are used, the selector portion of the
direct or indirect pointer references the gate descriptor, and
the offset portion is ignored. The offset into the destination’s
code segment is taken from the call-gate descriptor.

Long mode redefines the 32-bit call-gate descriptor type as a 64-
bit call-gate descriptor and expands the descriptor’s size to hold
a 64-bit offset (see "Call Gates" on page 60). The long-mode
call-gate descriptor allows far branches to reference any
location in the supported virtual-address space. Long-mode call
gates also hold the target code selector (CS), allowing changes
to privilege level and default size as a result of the gate
transition.

Stack Switches. For details on stack switches, see "Stack
Switching" on page 73.

Branches to 64-Bit Offsets. Because immediates are generally
limited to 32 bits, the only way a full 64-bit absolute RIP can be
specified in 64-bit mode is with an indirect branch. For this
reason, direct forms of far branches are eliminated from the
instruction set in 64-bit mode.

SYSCALL and SYSRET. Long mode expands the semantics of the
SYSCALL and SYSRET instructions so that they specify a 64-
bit code offset. Two such 64-bit offsets are defined—one for
compatibility-mode callers and another for 64-bit-mode callers.
See "System Target-Address Registers" on page 64 for system-
level details.

The SYSCALL and SYSRET instructions were designed for
operating systems that use a flat memory model, in which
segmentation is disregarded. This makes them ideally suited for
long mode. The memory model is flat in long mode, so these
instructions simplify calls and returns by eliminating unneeded
checks.

Software should not alter the CS or SS descriptors in a manner
that violates the following assumptions made by the SYSCALL
and SYSRET instructions:

■ The CS and SS base and limit remain the same for all
processes, including the operating system.

■ The CS of the SYSCALL target has a privilege level of 0.

■ The CS of the SYSRET target has a privilege level of 3.
28 Application Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
SYSCALL and SYSRET do not check for violations of these
assumptions. For details on operating system support of
SYSCALL and SYSRET, see "SYSCALL and SYSRET" on
page 64.
Application Programming 29

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
System Programming

Overview

This section is intended for programmers writing operating
systems, loaders, linkers, device drivers, or utilities that require
privileged instructions. It assumes an understanding of x86-64
architecture application-level programming that is described in
"Application Programming" on page 9.

Additional system-programming information can be found in
the following appendixes:

■ Appendix A, "Integer Instructions in 64-Bit Mode"‚ on
page 77.

■ Appendix B, "Long Mode Differences"‚ on page 116.

■ Appendix C, "Initialization Example"‚ on page 118.

■ Appendix D, "Implementation Considerations"‚ on
page 124.

Canonical Address Form

Long mode def ines 64 b i ts o f v i r tual address , but
implementations can support less. The first implementation of
AMD’s family of processors that implement the x86-64
architecture (code named the “Hammer family”) will support
48 bits of virtual address. Although implementations might not
use all 64 bits of the virtual address, they will check bits 63
through the most-significant implemented bit to see if those
bits are all zeros or all ones. An address that complies with this
property is said to be in canonical address form. If a virtual-
memory reference is not in canonical form, the implementation
generates an exception. In most cases, a general-protection
exception (#GP) is generated. However, in the case of explicit or
implied stack references a stack fault (#SF) is generated. An
implied stack reference includes all PUSH/POP-type
instructions and any instruction using RSP or RBP as a base
register.
30 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
CPUID

The CPUID instruction reports the presence of processor
features and capabilities. Typically, software loads a function
code into the EAX register and executes the CPUID instruction.
As a result of executing the CPUID instruction, processor
feature information is returned in the EAX, EBX, ECX, and
EDX registers.

8000_0000h. Execut ing CPUID with a funct ion code of
8000_0000h returns a value in EAX that indicates the largest
extended-function code recognized by the implementation. The
largest extended-function code recognized in the first
implementation of the Hammer family of processors is
8000_0008h.

8000_0001h. When the function code is 8000_0001h, the CPUID
instruction returns the extended-feature flags in EAX. Table 10
shows the long-mode extended-feature flag.

8000_0008h. When the function code is 8000_0008h, the CPUID
instruction returns address-size information in the EAX
register. Figure 6 shows the format. Registers EBX, ECX and
EDX are reserved.

Figure 6. EAX Format Returned by Function 8000_0008h

The returned virtual-address and physical-address size indicate
the address widths, in bits, supported by the implementation.
In the first implementation of the Hammer family of processors,
the supported virtual-address size is 48 bits (30h) and the
physical-address size is 40 bits (28h). The virtual address size, if
greater than 32 bits, applies to long mode only. The physical
address size applies to all modes.The values returned by this
extended-function code are not influenced by enabling or

Table 10. Extended-Feature Flags for First Implementation

Bit Feature

29 LM Long Mode

31 16 15 8 7 0

Reserved Virtual Address Size Physical Address Size
System Programming 31

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
disabling either long mode or physical address extensions
(PAE).

System Registers

The x86-64 architecture introduces changes to several system
registers:

■ Model-Specific Registers (MSR). New control bits are added
to the extended feature enable register (EFER). It contains
control bits for enabling and disabling features of the x86-64
architecture.

■ Control Registers. All control registers are expanded to 64
bits, and a new control register, the task priority register
(CR8 or TPR) is added.

■ Descriptor Table Registers. The global descriptor table
register (GDTR) and interrupt descriptor table register
(IDTR) are expanded to 10 bytes, to hold the full 64-bit base
address.

■ Debug Registers. All debug registers are expanded to 64
bits.

Extended Feature
Enable Register
(EFER)

The extended feature enable register (EFER) contains control
bits that enable extended features of the processor. The EFER
is an model-specific register (MSR) with an address of
C000_0080h. It can be read and written only by privileged
software.
32 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Figure 7. Extended Feature Enable Register (EFER)

Figure 7 shows the EFER register. The EFER bits are as follows:

SCE System call extension (bit 0). Setting this bit to 1
enables the SYSCALL and SYSRET instructions.
Software can use these instructions for low-latency
system calls and returns in non-segmented (flat
address space) operating systems.

LMA Long mode active (bit 10). This bit is a read-only
status bit indicating that long mode is active. The
processor sets LMA to 1 when both long mode and
paging have been enabled. See "Activating Long
Mode" on page 37 for details.

When LMA=1, the processor is running either in
compatibility mode or 64-bit mode, depending on
the values of the code segment descriptor’s L and D
bits as shown in Table 11 on page 36.

When LMA=0, the processor is running in legacy
mode. In this mode, the processor behaves like a
standard 32-bit x86 processor, with none of the new
64-bit features enabled.

LME Long mode enable (bit 8). Setting this bit to 1
enables the processor to switch to long mode. Long
mode is not activated until software enables paging
some time later. When paging is enabled while LME
is set to 1, the processor sets the EFER.LMA bit to 1,
indicating that long mode is not only enabled but
also active.

All other EFER bits are reserved and must be written with
zeros (MBZ).

7 1 063

Reserved

Reserved, RAZ

8

S
C
E

Symbol Description Bits
 LMA Long Mode Active 10
LME Long Mode Enable 8

Reserved, RAZ 7–1
 SCE System Call Enable 0

9

Reserved, MBZ

10

L
M
A

L
M
E

System Programming 33

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Control Registers Control registers CR0-CR4 are expanded to 64 bits in the x86-64
architecture hardware. In 64-bit mode, the MOV CRn
instructions read or write all 64 bits of these registers. Operand-
size prefixes are ignored. In compatibility and legacy modes,
control register writes fill the upper 32 bits with zeros and
control register reads return only the lower 32 bits.

In 64-bit mode, the upper 32 bits of CR0 and CR4 are reserved
and must be written with zeros. Writing a 1 to any of the upper
32 bits results in a general-protection exception, #GP(0). All 64
bits of CR2 and CR3 are writable by software. However, the
MOV CRn instructions do not check that addresses written to
CR2 or CR3 are within the virtual-address or physical-address
limitations of the implementation.

Task Priority Register (TPR). The x86-64 architecture introduces a
new control register, CR8, defined as the task priority register
(TPR). Operating systems can use the TPR to control whether
or not external interrupts are allowed to interrupt the
processor, based on the interrupt’s priority level.

Figure 8 shows the TPR. Only the low four bits are used. The
remaining 60 bits are reserved and must be written with zeros.

Figure 8. Task Priority Register (CR8)

For details on how the operating system can use the TPR, see
"Task Priority" on page 75.

63 4 3 0

Reserved, MBZ
Task Priority

Register (TPR)
34 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Descriptor Table
Registers

The four system-descriptor-table registers (GDTR, IDTR,
LDTR, and TR) are expanded in hardware to hold 64-bit base
addresses. This allows operating systems running in long mode
to locate system-descriptor tables anywhere in the virtual-
address space supported by the implementation.

Figure 9 shows the GDTR and IDTR. Figure 10 shows the LDTR
and TR. In all cases, only 48 bits of base address are supported
in the first implementation of the Hammer family of processors.

Figure 9. GDTR and IDTR

Figure 10. LDTR and TR

For details on how the operating system uses system-descriptor-
tables, see "System Descriptors" on page 45.

Debug Registers Like the control registers, debug registers DR0–DR7 are
expanded to 64 bits. In 64-bit mode, the MOV DRn instructions
read or write all 64 register bits. Operand-size prefixes are
ignored.

In all 16-bit or 32-bit modes (legacy or compatibility modes),
writes to a debug register fill the upper 32 bits with zeros and
reads from a debug register return only the lower 32 bits.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved
and must be written with zeros. Writing a 1 to any of the upper
32 bits results in a general-protection exception, #GP(0). All 64
bits of DR0–DR3 are writable by software. However, the MOV
DRn instructions do not check that addresses written to DR0–
DR3 are within the v ir tual -address l imits of the
implementation.

63 16 15 0

Limit

Base

63 31 16 15 0

Selector

Attributes

Limit

Base
System Programming 35

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Enabling and Activating Long Mode

Table 11 shows the control-bit settings for enabling and
activating the various operating modes of the x86-64
architecture. The default address and data sizes are shown for
each mode. For the methods of overriding these default address
and data sizes, see "Address -Size and Operand-Size
Prefixes" on page 17.

Processor Modes Long mode uses two code-segment-descriptor bits, CS.L and
CS.D, to control the operating submodes. See "Code
Segments" on page 41 for details of code-segment attributes
and overrides in long mode.

If long mode is active, CS.L = 1, and CS.D = 0, the processor is
running in 64-bit mode, as shown in Table 11. With this
encoding (CS.L=1, CS.D=0), default operand size is 32 bits and
default address size is 64 bits. Using instruction prefixes, the
default operand size can be overridden to 64 bits or 16 bits, and
the default address size can be overridden to 32 bits.

Table 11. Processor Modes

Mode

Encoding
Default
Address

Size
(bits)2

Default
Data
Size

(bits)3

EF
ER

.L
M

A1

CS
.L

CS
.D

Long
Mode

64-Bit
Mode

1

1 0 64 32

Compatibility
Mode

0
1 32 32

0 16 16

Legacy Mode 0 x
1 32 32

0 16 16

1. EFER.LMA is set by the processor when software sets EFER.LME and
CR0.PG according to the sequence described in "Activating Long
Mode" on page 37.

2. See Table 4 on page 17 for overrides to default address sizes.
3. See Table 5 on page 18 for overrides to default operand sizes.
36 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
The second encoding of CS.L and CS.D in 64-bit-mode (CS.L=1,
CS.D=1) is reserved for future use.

When long mode is active and CS.L is cleared to 0, the processor
is in compatibility mode, as shown in Table 11. In this mode,
CS.D controls default operand and address sizes exactly as it
does in the legacy x86 architecture. Setting CS.D to 1 specifies
default operand and address sizes as 32 bits. Clearing CS.D to 0
specifies default operand and address sizes as 16 bits.

Activating Long Mode Long mode is enabled by setting the EFER.LME bit to 1 (see
Figure 7 on page 33 for this bit). However, long mode is not
activated until software also enables paging. When software
enables paging, the processor activates long mode and signals
this by setting the EFER.LMA status bit (long mode active) to 1.

Long mode requires the use of physical-address extensions
(PAE) in order to support physical-address sizes greater than 32
bits. Software enables physical-address extensions by setting
the CR4.PAE bit to 1. Physical-address extensions must be
enabled prior to enabling paging (CR0.PG=1).

Switching the processor to long mode requires several steps.
The process must start the switch in real mode or non-paged
(CR0.PG=0) protected mode. Software must follow this general
sequence to activate long mode:

1. If starting from page-enabled protected mode, disable
paging by clearing CR0.PG to 0. This requires that the MOV
CR0 instruction used to disable paging be located in an
identity-mapped page (virtual address equals physical
address).

2. In any order:

- Enable physical-address extensions by setting CR4.PAE
to 1.

- Load CR3 with the physical base address of the level-4
page map table (PML4). See "PML4" on page 49 for
details.

- Enable long mode by setting EFER.LME to 1.

3. Enable paging by setting CR0.PG to 1. This causes the
processor to set the LMA bit to 1. The instruction following
the MOV CR0 that enables paging must be a branch, and
both the MOV CR0 and the following branch instruction
must be located in an identity-mapped page.
System Programming 37

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
To return from long mode to legacy paged-protected mode,
software must deactivate and disable long mode using the
following general sequence:

1. Deactivate long mode by clearing CR0.PG to 0. This causes
the processor to clear the LMA bit to 0. The MOV CR0
instruction used to disable paging must be located in an
identity-mapped page.

2. Load CR3 with the physical base address of the legacy page-
table-directory base address.

3. Disable long mode by clearing EFER.LME to 0.

4. Enable legacy paged-protected mode by setting CR0.PG to
1. The instruction following the MOV CR0 that enables
paging must be a branch, and both the MOV CR0 and the
following branch instruction must be located in an identity-
mapped page.

Throughout this document, the phrase in long mode means that
long mode is both enabled and active.

System Descriptor Table Considerations. Immediately after activating
long mode, the system-descriptor-table registers (GDTR, LDTR,
IDTR, TR) continue to reference legacy descriptor tables. The
tables referenced by the descriptors all reside in the lower
4GBytes of virtual-address space. After activating long mode,
64-bit operating-system software should use the LGDT, LLDT,
LIDT, and LTR instructions to load the system-descriptor-table
registers with references to the 64-bit versions of the descriptor
tables. See "System Descriptors" on page 45 for details on
descriptor tables in long mode.

Software must not allow exceptions or interrupts to occur
between the time long mode is activated and the subsequent
update of the interrupt-descriptor-table register (IDTR) that
establishes a reference to the 64-bit interrupt-descriptor table
(IDT). This is because the IDT remains in its legacy form
immediately after long mode is activated. Long mode requires
that 64-bit interrupt gate descriptors be stored in the IDT. If an
interrupt or exception occurred prior to updating the IDTR, a
legacy 32-bit interrupt gate would be referenced and
interpreted as a 64-bit interrupt gate with unpredictable results.

External interrupts can be disabled using the CLI instruction.
Non-maskable interrupts (NMI) must be disabled using
external hardware. See "Interrupts" on page 69 for details on
interrupts in long mode.
38 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Long-Mode Page Table Considerations. The long-mode paging tables
must be located in the first 4GBytes of physical-address space
prior to activating long mode. This is necessary because the
MOV CR3 instruction used to initialize the page-directory base
must be executed in legacy mode prior to activating long mode
(setting CR0.PG to 1 to enable paging). Because the MOV CR3
is executed in legacy mode, only the low 32 bits of the register
are written, limiting the table location to the low 4GBytes of
memory. Software can relocate the page tables anywhere in
physical memory after long mode is activated.

Consistency Checks. The processor performs long -mode
consistency checks whenever software attempts to modify any
of the enable bits directly involved in activating long mode
(EFER.LME, CR0.PG, and CR4.PAE). The processor generates
a general protection fault (#GP) when a consistency check fails.
Long-mode consistency checks ensure that the processor does
not enter an undefined mode or state with unpredictable
behavior.

Long-mode cons istency checks fa i l in the fol lowing
circumstances:

■ An attempt is made to enable or disable long mode while
paging is enabled.

■ Long mode is enabled and an attempt is made to enable
paging prior to enabling physical-address extensions (PAE).

■ Long mode is active and an attempt is made to disable
physical-address extensions (PAE).

Table 12 summarizes the long-mode consistency checks.

Table 12. Long Mode Consistency Checks

Register Bit Check

EFER
LME 0->1 if (CR0.PG=1) then #GP(0)

LME 1->0 if (CR0.PG=1) then #GP(0)

CR0 PG 0->1 if ((EFER.LME=1) & (CR4.PAE=0)) then #GP(0)

CR4 PAE 1->0 if (EFER.LMA=1) then #GP(0)
System Programming 39

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Virtual-8086 Mode The legacy virtual-8086 mode allows an operating system to run
16-bit real-mode software on a virtualized 8086 processor.
Virtual-8086 mode is not supported when the processor is
operating in long mode. When long mode is enabled, any
attempt to set the EFLAGS.VM bit is silently ignored.

Compatibility Mode: Support for Legacy Applications

Compatibility mode, within long mode, maintains binary
compatibility with legacy x86 16-bit and 32-bit applications.
Compatibility mode is selected on a code-segment basis, and it
allows legacy applications to coexist under the same 64-bit
operating system along with 64-bit applications running in 64-
bit mode. An operating system running in long mode can
execute existing 16-bit and 32-bit applications by clearing their
code-segment descriptor’s CS.L bit to 0.

When the CS.L bit is cleared to 0, the legacy x86 meanings of
the CS.D bit and the address-size and operand-size prefixes are
observed, and segmentation is enabled. From the application’s
viewpoint, the processor is in a legacy 16-bit or 32-bit
(depending on CS.D) operating environment, even though long
mode is activated.

Long-Mode Semantics In compatibility mode, the following two system-level
mechanisms continue to operate using the long-mode
architectural semantics:

■ Virtual-to-physical address translation uses the long-mode
extended page-translation mechanism.

■ Interrupts and exceptions are handled using the long-mode
mechanisms.

■ System calls (calls through call gates and SYSCALL/
SYSRET) are handled using the long mode mechanisms.

Switching Between
64-Bit Mode and
Compatibility Mode

The processor does not preserve the upper 32 bits of the 64-bit
GPRs across switches from 64-bit mode to compatibility or
legacy modes. In compatibility or legacy mode, the upper 32
bits of the GPRs are undefined and not accessible to software.

See "Registers" on page 7 for details on the extended registers
introduced by the long-mode architecture.
40 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Segmentation

In long mode, the effects of segmentation depend on whether
the processor is running in compatibility mode or 64-bit mode.

In compatibility mode, segmentation functions just as it does in
legacy mode, using legacy 16-bit or 32-bit protected mode
semantics.

In 64-bit mode, segmentation is generally (but not completely)
disabled, creating a flat 64-bit virtual-address space. 64-bit
mode treats the segment base as a zero, creating a logical
address that is equivalent to the virtual (or linear) address. The
exceptions are the FS and GS segments, whose segment
registers (which hold the segment base) can be used as an
additional base register in address calculations. This facilitates
addressing thread-local data and certain operating-system data
structures. See "Special Treatment of FS and GS Segments" on
page 43 for details about the FS and GS segments in 64-bit
mode.

Code Segments Code segments continue to exist in 64-bit mode. Code segments
and their associated descriptors and selectors are needed to
establish the processor’s operating mode as well as execution
privilege-level.

Most of the code-segment (CS) descriptor content is ignored in
64-bit mode. Only the L (long), D (default operation size), and
DPL (descriptor privilege level) attributes are used by long
mode. All remaining CS attributes are ignored, as are the CS
base and limit fields. For address calculations in 64-bit mode,
the segment base is treated as if it is zero.

Impacts on Segment Attributes. Long mode uses a previously unused
bit in the CS descriptor. Bit 53 is defined as the long (L) bit and
is used to select between 64-bit and compatibility modes when
long mode is activated (EFER.LMA=1). Figure 11 shows a
legacy CS descriptor with the L bit added.
System Programming 41

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Figure 11. Code Segment Descriptor

The CS descriptor’s D bit selects the default operand and
address sizes. When the CS.L bit is set to 1, the only valid
setting of CS.D is cleared to 0. This setting produces a default
operand size of 32 bits and a default address size of 64 bits. The
combination CS.L=1 and CS.D=1 is reserved for future use.

If CS.L is cleared to 0 while long mode is activated, the
processor is running in compatibility mode. In this case, CS.D
selects the default size for both data and addresses as it does in
legacy mode. If CS.D is cleared to 0, the default data and
address sizes are 16 bits, whereas setting CS.D to 1 selects a
default data and address size of 32 bits.

Table 11 on page 36 shows the effect of CS.L and CS.D on
default operand and address sizes when long mode is activated.
These default sizes can be overridden with operand size,
address size, and REX prefixes, as described in "Address-Size
and Operand-Size Prefixes" on page 17 and "REX Prefixes" on
page 18.

In long mode, the CS descriptor’s DPL is used for execution
privilege checks just as in legacy mode.

Base Address 15–0 Segment Limit 15–0

9 8 7 6 5 4 3 2 1 010111213141516171819202131 30 29 28 27 26 25 24 23 22

Segment
Limit

P DPL 0 Type
A
V
L

G DBase Address 31–24 Base Address 23–16

Symbol Description Bits
G Granularity 23
D Default Operand Size 22
L Long Mode 21
AVL Availability to Software 20
P Present/Valid Bit 15
DPL Descriptor Privilege Level 14-13
S Descriptor Type 12
Type Segment Type 11-8

L

42 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Data and Stack
Segments

In 64-bit mode, the contents of the ES, DS, and SS segment
registers are ignored. All fields (base, limit, and attribute) in
the corresponding segment descriptor registers (hidden part)
are also ignored.

Address calculations in 64-bit mode that reference the ES, DS,
or SS segments, are treated as if the segment base is zero.
Rather than perform limit checks, the processor instead checks
that all virtual-address references are in canonical form.

Neither enabling and activating long mode or switching
between 64-bit and compatibility modes changes the contents
of the segment registers or the associated descriptor registers.
These registers are also not changed during 64-bit mode
execution, unless explicit segment loads are performed.

Segment Loads. Segment-load instructions (MOV to Sreg, POP
Sreg) work normally in 64-bit mode. The appropriate entry is
read from the system descriptor table (GDT or LDT) and is
loaded into the hidden portion of the segment descriptor
register. The descriptor-register base, limit, and attribute fields
are all loaded. However, the contents of data and stack segment
selector and descriptor registers are ignored.

The ability to use segment-load instructions allows a 64-bit
operating system to set up a compatibility-mode application’s
segment registers prior to switching to compatibility mode.

Special Treatment of FS and GS Segments. The FS and GS segment
registers are used by the Windows NT™ operating system to
locate the thread-environment-block (TEB) and processor-
control-region (PCR) data structures. The FS and GS segment-
override prefixes provide quick access to these data structures
in an otherwise unsegmented (flat address space) operating
system. To facilitate compatible access to these structures, the
FS and GS segment overrides can be used in 64-bit mode.

When FS and GS segment overrides are used in 64-bit mode,
their respective base addresses are used in the virtual address
calculation. The complete virtual address calculation then
becomes (FS or GS).base + base + index + displacement.

In 64-bit mode, FS.base and GS.base are expanded to the full
virtual-address size supported by the implementation. The
resultant EA calculation is allowed to wrap across positive and
negative addresses.
System Programming 43

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
In 64-bit mode, FS-segment and GS-segment overrides are not
checked for limit or attributes.

Normal segment loads (MOV to Sreg and POP Sreg) into FS and
GS only load a standard 32-bit base value into the hidden
portion of the segment descriptor register. The base address
bits above the standard 32 bits are cleared to 0. Because the
first implementation of the Hammer family of processors
supports 48 virtual-address bits, a segment-load instruction
loads the base value into the lower 32 address bits and clears
the high 16 bits to 0.

To load all address bits supported by a 64-bit implementation,
the FS.base and GS.base hidden descriptor register fields are
physically mapped to MSRs. Privileged software (CPL=0) can
load all supported virtual-address bits into FS.base or GS.base
using a single WRMSR instruction. The FS.base MSR index is
C000_0100h while the GS.base index is C000_0101h.

The addresses written into the expanded FS.base and GS.base
registers must be in canonical form. A WRMSR instruction that
attempts to write a non-canonical address to those registers
generates a general-protection exception, #GP.

When in compatibility mode, the FS and GS overrides operate
as defined by the legacy x86 architecture regardless of the
value loaded into the upper 32 virtual-address bits of the
hidden descriptor register base field. Compatibility mode
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS can also be used to
load GS base. SWAPGS exchanges the kernel data structure
pointer from the KernelGSbase MSR with the GS base register.
The kernel can then use the GS prefix on normal memory
references to access the kernel data structures. See Appendix
A.11, "SWAPGS Instruction"‚ on page 112 for a complete
description .
44 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
System Descriptors In certain modes, system descriptors are expanded by 64 bits to
handle 64-bit base addresses (with additional room to spare).
The mode in which this size-expansion occurs depends on the
purpose served by the descriptor, as follows:

■ Expansion Only In 64-Bit Mode: Descriptors and pseudo-
descriptors that are loaded into the GDTR, IDTR, LDTR,
and TR registers are used to define system tables. These
descriptors are expanded only in 64-bit mode but not in
compatibility mode. For example, see "LDT and TSS
Descriptors" on page 46.

■ Expansion In Long Mode: Descriptors that populate system
tables and are actually referenced by application programs
are expanded in long mode (both 64-bit mode and
compatibility mode). These descriptors include call gates,
interrupt gates, and trap gates. (Task gates are not used in
long mode.) For example, see "Call Gates" on page 60.

Descriptor-Table Base Registers. The GDTR, LDTR, IDTR, and TR
system descriptor registers are used by the processor to locate
the GDT, LDT, and IDT system-descriptor tables and to locate
the task state segment (TSS) of the current process. These
system-descriptor registers are changed by long mode to
support the expanded memory addressing. See "Descriptor
Table Registers" on page 35 for details of the long mode
changes.

Descriptor Tables. The base address of the LDT and TSS are
specified by their associated descriptors. In order to hold 64-bit
bases, the LDT and TSS descriptors are expanded, as described
in "LDT and TSS Descriptors" on page 46. The GDT and IDT, on
the other hand, do not have descriptors. Instead, their bases are
loaded from the operands of the LGDT and LIDT instructions,
as described "LGDT and LIDT Instructions" on page 46. For 64-
bit mode (but not compatibility or legacy modes), the size of the
operands for these instructions is increased to specify a 64-bit
base.

The processor checks descriptor-table limits in long mode. The
limit-field sizes in all four descriptor-table registers are
unchanged from their legacy x86 sizes, because the offsets into
the descriptor tables are not extended in long mode. Thus, the
GDTR and IDTR limits remain 16 bits, and the LDTR and TR
limits remain 32 bits.
System Programming 45

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
The size of the segment-attribute fields in the LDTR and TR
registers are also unchanged in long mode. The existing LDT
type field (02h) and the existing 32-bit TSS type field (09h) are
redefined in 64-bit mode for use as the 64-bit LDT and TSS
types.

LDT and TSS Descriptors. In 64-bit mode, the LDT and TSS system
descriptors are expanded by 64 bits, as shown in Figure 12. This
allows them to hold 64-bit base addresses.

Figure 12. LDT and TSS Descriptors in 64-Bit Mode

Bytes 11:8 hold the upper 32 bits of the base address in
canonical form. A second type field, used for consistency
checking, is defined in bits 12:8 of the highest dword. This
entire field must be cleared to 0, indicating an illegal type. This
illegal type (00h) serves to generate a general-protection
exception (#GP) if an attempt is made to access the upper half
of a 64-bit-mode descriptor as a legacy x86 descriptor.

The existing LDT type field (02h) and 32-bit TSS type field
(09h) are redefined in 64-bit mode for use as the 64-bit LDT and
64-bit TSS types. In compatibility mode, a 02h type continues to
refer to a 32-bit LDT, and a 09h type continues to refer to a 32-
bit TSS. No other type-field codes are defined or redefined.

The 64-bit base address specified in the descriptor must be in
canonical form. If it is not, a general-protection exception,
#GP(selector), is generated.

LGDT and LIDT Instructions. These instructions load a pseudo-
descriptor into the GDTR or the IDTR register. The first two
bytes loaded in all modes (legacy, compatibility, and 64-bit) are
a 16-bit limit. The next bytes loaded depend on the mode, as
follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+12 Reserved, IGN 0 0 0 0 0 Reserved, IGN

+8 Base 63:32

+4 Base 31:24 G Reserved
IGN Limit 19:16 P DPL Type Base 23:16

+0 Base 15:00 Limit 15:00
46 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
■ In any 16-bit or 32-bit mode (legacy or compatibility mode),
the next 4 bytes loaded are the base, for a total of 6 bytes.

■ In 64-bit mode, the next 8 bytes loaded are the base, for a
total of 10 bytes.

Operand-size prefixes are ignored by the LGDT and LIDT
instructions. In 64-bit mode, the 64-bit base address loaded into
the GDTR and IDTR registers must be in canonical form,
otherwise a general-protection exception, #GP(selector), is
generated.

LLDT and LTR Instructions. These instructions load a system
descriptor into the processor’s internal LDTR and TR segment
descriptor registers (hidden portion). In 64-bit mode, the
expanded descriptor format and redefined descriptor types
give rise to the following restrictions on the descriptors that
these instructions can load:

■ The 64-bit base address loaded by an LLDT or LTR must be
in canonical form, otherwise a general-protection exception,
#GP(selector), is generated.

■ A general-protection exception, #GP(selector), is generated
if an attempt is made to load the second type field (bits 12:8
of the highest dword) with a value other than 00h.

■ A general-protection exception, #GP(selector), is generated
if an LTR instruction references either a busy or 16-bit TSS.

In 64-bit mode, the LTR instruction still changes a task’s state to
busy (descriptor type set to 0Bh). Because long mode does not
support task switches, a task descriptor’s busy bit is never
automatically cleared. If the operating system has previously
loaded the task descriptor using the LTR instruction, the
operating system is responsible for clearing the task’s busy bit
(setting descriptor type to 09h).
System Programming 47

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Virtual Addressing and Paging

In long mode, a virtual address is a uniform 64-bit offset into
the virtual address space. The mechanisms that translate
virtual addresses into physical addresses are changed to
support the larger virtual-address size.

Virtual-Address and
Physical-Address Size

The long-mode architecture provides for 64 bits of virtual-
address space and 52 bits of physical-address space. The
maximum supported virtual-address space is 264 bytes (16
exabytes) while the maximum supported physical-address
space is 252 bytes (4 petabytes).

Implementation Specifics. Implementations can support smaller
virtual-address and physical -address spaces than the
maximums defined by the long-mode architecture.

The first implementation of the Hammer family of processors
supports 48 bits of virtual address and 40 bits of physical
address. The CPUID instruction returns the number of virtual-
address and physical -address bits supported by the
implementation. See "CPUID" on page 31 for details.

Canonical Address Form. The long-mode architecture requires
implementations supporting fewer than the full 64-bit virtual
address to ensure that those addresses are in canonical form.
An address is in canonical form if the address bits from the
most-significant implemented bit up to bit 63 are all ones or all
zeros. If the addresses of all bytes in a virtual-memory reference
are not in canonical form, the processor generates an exception
(#GP). In most cases, a general-protection exception (#GP) is
generated. However, in the case of explicit or implied stack
references, a stack fault (#SF) is generated. An implied stack
reference includes all PUSH/POP-type instructions and any
instruction using RSP or RBP as a base register.

Checking canonical address form prevents software from
exploiting upper unused bits of pointers for other purposes.
Software complying with canonical-address form on a specific
implementat ion can run unchanged on long -mode
implementations supporting larger virtual-address spaces.

In the first implementation of the Hammer family of processors,
canonical address form checking is performed on virtual
address bits [63:47].
48 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Paging Data
Structures

The long-mode architecture expands the physical address
extension (PAE) paging structures to support mapping a 64-bit
virtual address into a 52-bit physical address. In the first
implementation of the Hammer family of processors, the PAE
paging structures are extended to support translation of a 48-bit
virtual address into a 40-bit physical address.

Physical-Address Extensions. Prior to activating long mode, PAE
must be enabled by setting CR4.PAE to 1. PAE expands the size
of an individual page-directory entry (PDE) and page-table
entry (PTE) from 32 bits to 64 bits, allowing physical-address
sizes of greater than 32 bits. Activating long mode prior to
enabling PAE results in a general-protection exception (#GP).

PML4. The long-mode architecture adds a new table, called the
page map level 4 (PML4) table, to the virtual-address
translation hierarchy. The PML4 table sits above the page
directory pointer (PDP) table in the page-translation hierarchy.
The PML4 contains 512 eight-byte entries, with each entry
pointing to a PDP table. Nine virtual-address bits are used to
index into the PML4.

PML4 tables are used in page translation only when long mode
is activated. They are not used when long mode is disabled,
regardless of whether or not PAE is enabled.

PDP. The existing page-directory pointer table is expanded by
the long-mode architecture to 512 eight-byte entries from four
entries. As a result, nine bits of the virtual address are used to
index into a PDP table rather than two bits.

PDE, PTE, and Page Offsets. The size of both page-directory entry
(PDE) tables and page-table entry (PTE) tables remains 512
eight-byte entries, each indexed by nine virtual-address bits.

The total of virtual-address index bits into the collection of
paging data structures (PML4 + PDP + PDE + PTE + page
offset) defined above is 48 (9+9+9+9+12). The method for
translating the high-order 16 virtual-address bits into a physical
address is currently reserved.

Large Page Sizes. The PS f lag in the page directory entry
(PDE.PS) selects between 4KByte and 2MByte page sizes.
Because PDE.PS is used to control large page selection, the
CR4.PSE bit is ignored.
System Programming 49

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Page Table Formats for 4K Page Size. Figure 13 shows the long-mode
PML4, PDP, PDE, and PTE formats when 4KByte pages are
enabled.
50 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Page Map Level 4 Entry (PML4)

Page Directory Pointer Table Entry

Page Directory Entry (PDE)

Page Table Entry (PTE)

Figure 13. Long-Mode Page Table Formats (4KByte Pages)

63 52 51 40 39 32

Available Reserved, MBZ Base Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Directory Pointer Base Address Available Reserved,
MBZ A

P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 40 39 32

Available Reserved, MBZ Base Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Directory Base Address Available Reserved,
MBZ A

P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 40 39 32

Available Reserved, MBZ Base Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Table Base Address Available X 0 X A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 40 39 32

Available Reserved, MBZ Base Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Base Address Available G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

System Programming 51

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
The physical base-address field in all four table entry formats is
extended by the long-mode architecture to bits 51:12. This
allows paging tables to be located anywhere in the physical
memory supported by a long-mode implementat ion.
Implementations that do not support the maximum physical-
address size reserve the unsupported high-order bits and
require that they be cleared to zeros. The physical base-address
field in the first implementation of the Hammer family of
processors is specified by bits 39:12.

Bits 63:52 in all page-table entry formats are available for use
by system software. In the long-mode architecture, future
implementations leave bits 63:52 available for software use.

Other than the extensions made to the base-address field and
the addition of the software-available field at bits 63:52, all
other PDE and PTE fields are the same as in legacy mode.

PDP Table-Entry Exceptions for 4K Page Size. Fields within the PDP
table entry are similar to legacy mode PDP table entries, with
the following exceptions. The exceptions reflect changes
necessary to indicate that a higher-level paging structure
(PML4) now references the PDP tables:

■ Bit 0 is no longer reserved. Long mode defines this bit as the
present (P) flag to indicate whether or not the PDE table
referenced by the PDP entry is currently stored in physical
memory. A page-fault exception (#PF) is generated when the
processor accesses a PDP entry with the P flag cleared to 0.

■ Bit 1 is no longer reserved. Long mode defines this bit as the
read/write (R/W) flag.

■ Bit 2 is no longer reserved. Long mode defines this bit as the
user/supervisor (U/S) flag.

■ Bit 5 is no longer reserved. Long mode defines this bit as the
accessed (A) flag.

■ The base-address field extensions, as specified above.

■ Bits 63:52 available to software, as specified above.

The format of a PML4 table entry is identical to the long-mode
PDP table-entry format.
52 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Page Table Formats for 2M Page Size. Figure 14 shows the long-mode
PML4, PDP, and PDE formats when 2MByte pages are enabled.
As with legacy mode, 2MByte pages are enabled by setting the
PDE page-size bit (PDE.PS) to 1. Control of 2M page sizes is not
dependent on CR4.PSE.

Page Map Level 4 Entry (PML4)

Page Directory Pointer Table Entry (PDP)

Page Directory Entry (PDE)

Figure 14. Long-Mode Page Table Formats (2MByte Pages)

63 52 51 40 39 32

Available Reserved, MBZ Base Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Directory Pointer Base Address Available Reserved,
MBZ

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 40 39 32

Available Reserved–MBZ Base Address

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Directory Base Address Available Reserved,
MBZ A

P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 40 39 32

Available Reserved, MBZ Base Address

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Page Base Address Reserved, MBZ
P
A
T

Available G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

System Programming 53

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
The physical base-address field in all three table-entry formats
is extended by the long-mode architecture to bits 51:12. This
allows paging tables to be located anywhere in the physical
memory supported by a long-mode implementat ion.
Implementations that do not support the maximum physical-
address size reserve the unsupported high-order bits and
require that they be cleared to zeros. The physical base-address
field in the first implementation of the Hammer family of
processors is specified by bits 39:12.

Bits 63:52 in all page-table entry formats are available for use
by system software. In the long-mode architecture, future
implementations will leave bits 63:52 available for software use.

When 2MByte pages are selected, the PDE points directly to the
physical page, and not to a PTE. Other than the extensions
made to the base-address field and the addition of the software-
available field at bits 63:52, all other PDE fields are the same as
in legacy mode.

PDP Table-Entry Exceptions for 2M Page Size. Fields within the PDP
table entry are similar to legacy-mode PDP table entries, with
the following exceptions. The exceptions reflect changes
necessary to indicate that a higher-level paging structure
(PML4) now references the PDP tables:

■ Bit 0 is no longer reserved. Long mode defines this bit as the
present (P) flag to indicate whether or not the PDE table
referenced by the PDP entry is currently stored in physical
memory. A page-fault exception (#PF) is generated when the
processor accesses a PDP entry with the P flag cleared to 0.

■ Bit 1 is no longer reserved. Long mode defines this bit as the
read/write (R/W) flag.

■ Bit 2 is no longer reserved. Long mode defines this bit as the
user/supervisor (U/S) flag.

■ Bit 5 is no longer reserved. Long mode defines this bit as the
accessed (A) flag.

■ The base-address field extensions, as specified above.

■ Bits 63:52 available to software, as specified above.

The format of a PML4 table entry is identical to the long-mode
PDP table-entry format.
54 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Enhanced Legacy-
Mode Paging

Some changes made to legacy x86 paging data structures to
support the larger physical address sizes used in long mode are
also available in legacy mode. Specifically, legacy-mode
software can take advantage of the enhancements made to the
physical address extension (PAE) support and page size
extension (PSE) support. The four-level page translation
mechanism introduced by long mode is not available to legacy
mode software.

PAE in Legacy Mode. As descr ibed in "Physical -Address
Extensions" on page 49, setting CR4.PAE to 1 expands the size
of an individual PDE and PTE from 32 bits to 64 bits, allowing
physical-address sizes of greater than 32 bits. Previous legacy
x86 implementations limit the larger physical-address size to
36-bits.

The x86-64 architecture allows legacy-mode software to load up
to 52-bit physical addresses into the PDE and PTE, as limited by
the maximum physical-address size supported by a specific
implementation. Unsupported physical-address bits are
reserved and must be c leared to zero. In the f irs t
implementation of the Hammer family of processors legacy-
mode software can use up to 40 bits of physical address in PDE
and PTE entries. Software must clear bits 51:40 to 0.

The long mode architecture defines PDE and PTE bits 63:52 as
available to operating system software. Implementations of the
x86-64 architecture make those same PDE and PTE bits
available to legacy-mode software.

PSE in Legacy Mode. Legacy-mode page-size extensions (PSE) are
enabled by setting the page-size enable bit in CR4 (CR4.PSE) to
1. PSE modifies the original 4-byte PDE format to support
4MByte pages in addition to legacy 4KByte pages. 4MByte
pages are selected by setting the PDE page size bit (PDE.PS) to
1 while clearing PDE.PS to 0 selects 4KByte pages.

When PDE.PS=1, the processor combines PDE bits 31:22 with
virtual address bits 21:0 to form a 32-bit physical address into a
4MByte page. Legacy PTEs are not used in a 4MByte page
translation. Because the PTEs are not used, PDE bits 21:12 are
reserved in the original PSE mode definition.

Updates to PSE mode change the 4-byte PDE format to also
support 36-bit physical addresses without requiring the 8-byte
format used by PAE. This is accomplished by using previously
System Programming 55

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
reserved PDE bits 16:13 to hold four additional high-order
physical address bits. Bits 21:17 are reserved.

The x86-64 architecture further modifies the 4-byte PDE format
in PSE mode to increase physical address size support to 40
bits. This is accomplished by defining previously reserved PDE
bits 20:17 to hold four additional high-order physical address
bits. Bit 21 is reserved and must be cleared to 0.

Figure 15 shows the format of the PDE when PSE mode is
enabled. The high-order physical address bits 39:32 are located
in PDE[20:13] while physical address bits 31:22 are located in
PDE[31:22].

Figure 15. Legacy-Mode Page-Directory Entry for 4MByte Pages

CR2 and CR3 The size of CR2 (page-fault address register) is increased to 64
bits by the long-mode architecture to hold 64-bit virtual
addresses.

The long-mode architecture also increases the size of CR3
(page-directory base register) to 64 bits. This allows the first
level of the paging structures to be located anywhere in
physical memory, subject to the implementation-dependent
physical-address size limits.

Figure 16 shows the long-mode format of CR3. The Base
Address field specifies the most-significant bits of the page-
directory base address above bit 11. The Page-Directory Base
field holds the most-significant physical-address bits of the top-
level paging structure. Bits 51:12 of CR3 define the maximum
base address allowed by the long-mode architecture, but
specific implementations can support smaller physical-address
spaces. The lower 12 bits (11:0) of the base address are always
assumed to be zero, forcing the top-level paging structure to be
aligned on a 4KByte boundary. CR3[39:12] specify the top-level
paging -s tructure (PML4) base address in the f irs t
implementation of the Hammer family of processors, indicating
that 40 bits of physical-address space are supported. CR3[63:40]
are reserved and must be cleared to zero.

31 22 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Page Base Address [31:22] 0 Page Base Address [39:32]
P
A
T

Available G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

56 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Figure 16. Long-Mode Control Register 3 (CR3)

CR3 bits [63:52] are available to software. They are read/write
are not used by the processor. CR3[51:40] are reserved for
future expansion of the page-directory base address. In the first
implementation of the Hammer family of processors, the
processor checks that these bits are written as zeros and
generates a general-protection exception, #GP(0), if they are
not.

The MOV to CR3 instruction is not affected by operand size in
long mode. In 64-bit mode, all 64 bits of CR3 are loaded from
the source register. In compatibility mode, only the lower 32
bits of CR3 are loaded from the source register and the upper
32 bits are cleared to 0.

Address Translation When paging is used in long mode, the processor divides the
virtual address into a collection of table and physical-page
offsets, much like in legacy mode. However, the long-mode
architecture extends how the processor divides the virtual
address to support the 64-bit virtual-address size and deeper
paging data-structure hierarchy.

4KB Pages. 4KByte pages are enabled by clearing the PDE page-
size flag (PDE.PS) to 0. Because the first implementation of the
Hammer family of processors supports a maximum 48 bits of
virtual address, this paging option supports 236 4KByte pages
spanning a virtual-address space of 248 bytes (256 terabytes).

P
C
D

Reserved

9 8 7 6 5 4 3 2 1 010111213141516171819202131 30 29 28 27 26 25 24 23 22

Page-Directory Base

Symbol Description Bit
PCD Page Cache Disable 4
PWT Page Writethrough 3

P
W
T

41 40 39 38 37 36 35 34 33 3242434445464748495051525363 62 61 60 59 58 57 56 55 54

Available to Software Base AddressReserved, MBZ, in First Implementation

Reserved, IGN Reserved,
IGN
System Programming 57

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
The 48-bit virtual address is broken into five fields to index into
the 4-level paging structure, as follows and in Figure 17:

■ Bits 47:39 index into the 512-entry page map level-4 table.

■ Bits 38:30 index into the 512-entry page-directory pointer
table.

■ Bits 29:21 index into the 512-entry page-directory table.

■ Bits 20:12 index into the 512-entry page table.

■ Bits 11:0 provide the byte offset into the physical page.

Figure 17. 4KB-Page Translation

Virtual Address

Page OffsetSign Extend
Page Map

Level 4 Table Offset
(PML4)

Page Directory
Pointer Offset

Page Directory
Offset

Page Table
Offset

01112202129303839474863

Physical
Address

PTE

PDE

PDPE

PML4E

9999

40

40

40

40

Page Directory

1239

CR3

Page Map
Level 4

Page
Pointers
Directory

Page
Directory

Page
Table

4KByte
Page Frame
58 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
2MB Pages. 2MByte pages are enabled by setting the PDE page
size flag (PDE.PS) to 1. Because the first implementation of the
Hammer family of processors supports a maximum 48 bits of
virtual address, this paging option supports 227 2MByte pages
spanning a virtual-address space of 248 bytes (256 terabytes).

The 48-bit virtual address is broken up into four fields to index
into the 3-level paging structure, as follows and in Figure 18:

■ Bits 47:39 index into the 512-entry page map level-4 table.

■ Bits 38:30 index into the 512-entry page-directory pointer
table.

■ Bits 29:21 index into the 512-entry page-directory table.

■ Bits 20:0 provide the byte offset into the physical page.

Figure 18. 2MB-Page Translation

Virtual Address

Page OffsetSign Extend
Page Map

Level 4 Table Offset
(PML4)

Page Directory
Pointer Offset

Page Directory
Offset

01112202129303839474863

Physical
Address

PDE

PDPE

PML4E

999

40

40

40

Page Directory

1239

CR3

Page Map
Level 4

Page
Pointers
Directory

Page
Directory

2MByte
Page Frame
System Programming 59

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Privilege-Level Transitions and Far Transfers

The long-mode architecture provides two mechanisms for
changing privilege levels:

■ Call gates and interrupt gates. See "Interrupts" on page 69
for details on interrupts.

■ SYSCALL and SYSRET instructions.

Call Gates The call-gate mechanism provides a public entry point into the
operating system. It also provides a means for changing
privilege levels and stacks when calling the operating system.

Gate Descriptor Format. Legacy x86 call-gate descriptors provide a
32-bit offset for the instruction pointer (EIP). The long-mode
architecture doubles the size of legacy call gates to provide a
64-bit offset for the instruction pointer (RIP).

Figure 19 shows the layout of a call-gate descriptor in long
mode. Table 13 describes the fields in a long-mode call gate.

Figure 19. Call Gates in Long Mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+12 Reserved, IGN 0 0 0 0 0 Reserved, IGN

+8 Offset 63:32

+4 Offset 31:16 P DPL Type 0 0 0 0 0 0 0 0

+0 Target Segment Selector Offset 15:00

Table 13. Long-Mode Call-Gate Fields

Gate Field Function

+12[31:13] Unused

+12[12:8] Must be 0

+12[7:0] Unused

+8[31:0] Offset 63:32 in canonical form

+4[31:16] Offset 31:16

+4[15:13] Present and Descriptor Privilege Level
60 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
The first eight bytes (bytes 7:0) of a long-mode call gate are
identical to legacy 32-bit call gates. Bytes 11:8 hold the upper
32 bits of the target-segment offset in canonical form. A
general-protection exception (#GP) is generated if software
attempts to use a call gate with a target offset that is not in
canonical form.

The target code segment referenced by the call gate must be a
64-bit code segment (CS.L=1, CS.D=0). If it is not, a general-
protection exception, #GP(selector), is generated with the
target CS selector reported as the error code.

The double-sized descriptors can reside in the same descriptor
table as 16-bit and 32-bit legacy descriptors. A second type
field, used for consistency checking, is defined in bits 12:8 of
the highest dword and must be cleared to zero. This illegal type
(00h) results in a general-protection exception (#GP) if an
attempt is made to access the upper half of the 64-bit mode
descriptor as a legacy descriptor.

Call Gates in Long Mode. Only long-mode cal l gates can be
referenced in long mode (64-bit mode and compatibility mode).
The legacy 32-bit call gate type (0Ch) is redefined in long mode
as the 64-bit call-gate type. No 32-bit call-gate type exists in
long mode. If a far call references a 16-bit call gate type (04h), a
general-protection exception (#GP) is generated.

Far Call Operand Size. The operand size of a far call determines the
size of operand-stack pushes and the size of the instruction-
pointer update. Far-call instructions that reference a call gate
use the gate size inferred by the type field to set the operand
size.

+4[12:8] Long-mode Call Gate Type (0Ch)

+4[7:0] Unused

+0[31:16] Target Segment Selector

+0[15:0] Offset 15:0

Table 13. Long-Mode Call-Gate Fields (continued)

Gate Field Function
System Programming 61

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
When a CALL references a long-mode call gate, the actions
taken are identical to those taken in legacy calls through a 32-
bit gate, with the following exceptions:

■ Stack pushes are performed in eight-byte increments.

■ A 64-bit RIP is pushed onto the stack.

The matching far-return instruction must be performed with a
64-bit operand-size override in order to process the stack
correctly.

Privilege-Level Changes and Stack Switching. A call gate can be used to
change to a more-privileged code segment. Although the
protection-check rules for call gates are unchanged in long
mode from legacy mode, the associated stack-switch changes
slightly in long mode.

Legacy-mode stack pointers consist of an SS:eSP pair (16-bit
selector and 16-bit or 32-bit offset). Stack pointers for privilege
levels 0, 1 and 2 are created by the operating system and stored
in the current TSS. In legacy mode, call-gate transfers that
change privilege levels cause the processor to automatically
perform a stack switch from the current stack to the inner-level
stack defined for the new privilege level. A new SS:eSP pair is
loaded from the TSS and the stack switch is initiated. After
completing the stack switch, the processor pushes the old
SS:eSP pair onto the new stack so that the subsequent far
returns will restore the old stack.

In long mode, the target of any call gate must be a 64-bit code
segment. 64-bit mode does not use segmentation, and stack
pointers consist solely of the 64-bit stack pointer (RSP). The SS
segment register is ignored in 64-bit mode.

When stacks are switched as part of a long-mode privilege-level
change through a call gate, a new SS descriptor is not loaded.
Long mode only loads an inner-level RSP from the TSS. The new
SS is forced to null and the SS selector’s RPL field is forced to
the new CPL.

The new SS is set to null in order to handle nested far transfers
(CALLF, INTn, interrupts and exceptions).
62 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
The old SS and RSP are saved on the new stack, as shown in
Figure 20. On the subsequent RETF the old SS is popped from
the stack and loaded into the SS register.

Figure 20. Long-Mode Stack Layout After CALLF with CPL Change

In summary, a stack switch in long mode works like the legacy
stack switch, except that a new SS selector is not loaded from
the TSS. Instead, the new SS is forced to null.

All long-mode stack operations resulting from a privilege-level-
changing far call or far return are eight-bytes wide and change
the RSP by eight.

Automatic Parameter Copy. Long mode does not support the
automatic parameter-copy feature found in legacy mode. The
call-gate count field is ignored by long mode. Software can
access the old stack, if necessary, by referencing the old stack-
segment selector and stack pointer saved on the new process
stack.

RETF Allows Null SS Selector. In long mode, RETF is allowed to load
a null SS under certain conditions. If the target mode is 64-bit
mode and the target CPL<>3, IRET allows SS to be loaded with
a null selector.

As part of the stack switch mechanism, an interrupt or
exception sets the new SS to null, instead of fetching a new SS
selector from the TSS and loading the corresponding descriptor
from the GDT or LDT.

The new SS selector is set to null in order to properly handle
returns from subsequent nested far transfers. If the called
procedure itself is interrupted, the null SS is pushed on the
stack frame. On the subsequent RETF, the null SS on the stack

Legacy Mode (LMA=0) Long Mode (LMA=1)

Old SS +12 +24 Old SS

Old ESP +8 +16 Old RSP

CS +4 +8 CS

EIP ESP RSP RIP

4 Bytes 8 Bytes
System Programming 63

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
acts as a flag to tell the processor not to load a new SS
descriptor.

SYSCALL and SYSRET The SYSCALL and SYSRET instructions were designed for
operating systems that use a flat memory model where
segmentation is not used. This makes the instructions ideally
suited for long mode.

The following section describes only the changes to the existing
SYSCALL and SYSRET instructions. Refer to the SYSCALL
and SYSRET application note (AMD publication #21086) for
complete details on these instructions.

The semantics of SYSCALL and SYSRET are expanded by the
long-mode architecture to specify a 64-bit code offset. In
addition, two such offsets are defined, one for 32-bit
compatibility-mode callers and another for 64-bit-mode callers.
Also, the handling of EFLAGS is modified in Long Mode: the
clearing of bits in the EFLAGS is programmable rather than
fixed, and SYSCALL and SYSRET save and restore the
EFLAGS register.

System Target-Address Registers. The legacy system target-address
register (STAR) cannot be expanded to provide a 64-bit target
RIP address, because the upper 32 bits of that MSR already
contain the target CS and SS selectors. Long mode provides two
new STAR registers—long STAR (LSTAR) and compatibility
STAR (CSTAR)—that hold a 64-bit target RIP. LSTAR holds the
target RIP used by a SYSCALL when long mode is activated
and the calling program is in 64-bit mode. CSTAR holds the
target RIP used by a SYSCALL when long mode is activated
and the calling program is in compatibility mode.

The SYSCALL and SYSRET CS and SS selectors used in long
mode and legacy mode are stored in the STAR.

LSTAR and CSTAR are written by the WRMSR instruction. The
addresses written to LSTAR and CSTAR are first checked by
the WRMSR instruction to ensure they are in canonical form. If
not, a general protection exception (#GP) is generated.

Figure 21 shows the layout and MSR numbers for the STAR,
LSTAR, CSTAR and FMASK registers.
64 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Figure 21. STAR, LSTAR, and CSTAR Model-Specific Registers (MSRs)

Operation. SYSCALL saves the RIP of the instruction following
the SYSCALL into RCX and loads the new RIP from the LSTAR
(64-bit mode) or CSTAR (compatibility mode). Upon return,
SYSRET copies the value saved in RCX into the RIP.

When SYSCALL is executed in long mode, the processor
assumes a 64-bit operating system is being called. SYSCALL
sets the target CS.L to 1, regardless of the current operating
mode (64-bit or compatibility), forcing the processor into 64-bit
mode.

EFLAGS Handling. SYSCALL and SYSRET handle the EFLAGS
differently when long mode is active (LMA=1).

In long mode, SYSCALL saves EFLAGS in R11. It then masks
EFLAGS with an OS-def ined value us ing the
SYSCALL_FLAG_MASK (MSR C000_0084). No bits in EFLAGS
are automatically cleared (except RF). In particular, the IF bit
is no longer automatically cleared.

The mask is only used when Long Mode is active (LMA=1). In
legacy mode (LMA=0) SYSCALL will clear the IF and RF bits.

A new MSR called FMASK (C000_0084) is defined to hold the
EFLAGS mask used by SYSCALL. This MSR should be set once
by the Operating System at boot time. SYSCALL applies this
mask to clear specified EFLAGS bits after saving it in R11. A 1
in the mask clears the corresponding EFLAGS bit. FMASK is a
64-bit value. In the first implementation, the lower 32 bits are
used to mask the flags; the upper 32 bits are unused and RAZ
(read as zero).

In 64-bit mode, SYSRET will restore EFLAGS from R11.

63 48 47 32 31 0

STAR C000_0081h SYSRET CS and SS SYSCALL CS and SS 32-bit SYSCALL Target EIP

LSTAR C000_0082h Target RIP for 64-Bit Mode Calling Programs

CSTAR C000_0083h Target RIP for Compatibility Mode Calling Programs

FMASK C001_0084h Reserved, RAZ SYSCALL EFLAGs MASK
System Programming 65

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Selecting SYSRET return mode. Because a SYSCALLed operating
system can be entered from either 64-bit mode or compatibility
mode, the corresponding SYSRET must know the mode to
which it must return. The called operating-system service
rout ine must have di f ferent entry points for 32 -bi t
compatibility-mode callers and 64-bit-mode callers in order to
translate arguments. In the service-routine entry point code, a
flag can be set indicating which type of SYSRET is needed upon
exiting the called routine. A REX-prefix operand-size override
can be used with SYSRET to put the processor into 64-bit mode
on return. Executing SYSRET without a REX-prefix operand-
size override puts the processor in compatibility mode on
return.

SYSRET uses the CS value found in SYSRET_CS (MSR
STAR[63:48]). If a return to compatibility mode is selected,
then SYSRET sets the CS selector value to SYSRET_CS. If a
return to 64-bit mode is selected, SYSRET sets the CS selector
value to SYSRET_CS +10h. The SS is set to SYSRET_CS + 8h in
all cases.

It is the responsibility of the OS to keep the descriptors in the
GDT/LDT that correspond to the selectors loaded by SYSCALL
and SYSRET consistent with the base, limit and attribute
values forced by the these instructions. SYSRET does not check
that the return address in RCX is in a canonical form. Such
behavior is undefined.

Task State Segments The legacy x86 task-switching architecture is not supported in
long mode. Long mode requires that task management and
switching be performed by software. The processor issues a
general-protection exception (#GP) if any of the following is
attempted in long mode:

■ A control transfer to a TSS or a task gate via a JMP, CALL,
INTn, or interrupt.

■ An IRET with EFLAGS.NT (nested task) set to 1.

64-Bit Task State Segment. Although the hardware task-switching
mechanism is not supported in long mode, a 64-bit task state
segment (TSS) must still exist. Figure 22 shows the format of a
64-bit TSS. This 64-bit TSS holds several pieces of information
important to long mode and not directly related to the task-
switch mechanism. These are:
66 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
■ RSPn. The full 64-bit canonical forms of the stack pointers
(RSP) for privilege levels 0–2 are stored in these fields.

■ ISTn. The full 64-bit canonical forms of the interrupt stack
table (IST) pointers. See "Interrupt Stack Table" on page 74
for a description of the IST mechanism.

■ I/O Map Base Address. The 16-bit offset to the I/O
permission bit map from the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after
activating long mode, and it must execute the LTR instruction,
in 64-bit mode, to load the TR register with a pointer to the 64-
bi t TSS that serves both 64 -b it -mode programs and
compatibility-mode programs.
System Programming 67

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Figure 22. TSS Format in Long Mode

31 16 15 0

+64h I/O Map Base Address Reserved, IGN

+60h Reserved, IGN

+5Ch Reserved, IGN

+58h

+54h
IST7

+50h

+4Ch
IST6

+48h
+44h IST5

+40h
+3Ch IST4

+38h
+34h IST3

+30h
+2Ch IST2

+28h
+24h IST1

+20h
+1Ch Reserved, IGN

+18h
+14h RSP2

+10h
+0Ch RSP1

+08h
+04h RSP0

+00h Reserved, IGN
68 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Interrupts

Interrupts and exceptions force control transfers to occur from
the currently executing program to an interrupt service routine
that handles the particular interrupt. The interrupt-handling
and exception-handling mechanism saves the interrupted
program’s execution state, transfers control to the interrupt
service routine, and ultimately returns to the interrupted
program.

Throughout this section, the term “interrupt” covers both
asynchronous events generated external to the processor
(interrupts) and synchronous events related to instruction
execution (exceptions, faults and traps).

The long-mode architecture expands the legacy x86 interrupt-
processing and exception-processing mechanism to support 64-
bit operating systems and applications. These changes include:

■ All interrupt handlers are 64-bit code.

■ The size of interrupt-stack pushes is fixed at 64 bits.

■ The stack pointer, SS:RSP, is pushed unconditionally on
interrupts, rather than conditionally based on a change in
current privilege level (CPL).

■ The new SS is set to null.

■ IRET behavior changes.

■ New interrupt stack-switch mechanism.

■ Alignment of interrupt stack frame.

Gate Descriptor
Format

The interrupt descriptor table (IDT) contains gate descriptors
that are used to locate the service routine for each interrupt
vector. Legacy interrupt-gate descriptors provide a 32-bit offset
for the instruction pointer (EIP). The long-mode architecture
doubles the size of legacy interrupt gates from eight bytes to 16
bytes in order to provide a 64-bit offset for the instruction
pointer (RIP). The 64-bit RIP referenced by an interrupt-gate
descriptor allows an interrupt service routine to be located
anywhere in the virtual-address space.
System Programming 69

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Figure 23 shows the layout of long-mode interrupt-gate and
trap-gate descriptors. Table 14 describes the fields in a 64-bit
interrupt and trap gate.

Figure 23. Interrupt and Trap Gate in Long Mode

In legacy mode, the IDT index is formed by scaling the
interrupt vector by eight. In long mode, the IDT index is formed
by scaling the interrupt vector by 16.

The first eight bytes (bytes 7:0) of a long-mode interrupt gate
are identical to legacy 32-bit interrupt gates. Bytes 11:8 hold
the upper 32 bits of the target RIP (interrupt segment offset) in
canonical form. A general-protection exception, #GP(0) is
generated if software attempts to reference an interrupt gate
with a target RIP that is not in canonical form.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+12 Reserved, IGN

+8 Offset 63:32

+4 Offset 31:16 P DPL Type Reserved, IGN IST

+0 Target Segment Selector Offset 15:00

Table 14. Long-Mode Interrupt- and Trap-Gate Fields

Gate Field Function

+12[31:0] Unused

+8[31:0] Offset bits 63:32

+4[31:16] Offset bits 31:16

+4[15:13] Present and Descriptor Privilege Level

+4[12:8] 64-bit Interrupt or Trap Gate Type (0Eh or 0Fh)

+4[7:3] Unused

+4[2:0] IST Index

+0[31:16] Target Segment Selector

+0[15:0] Offset bits 15:0
70 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
The target code segment referenced by the interrupt gate must
be a 64-bit code segment (CS.L=1, CS.D=0). If the target is not a
64-bit code segment, a general-protection exception,
#GP(error), is generated with the IDT vector number reported
as the error code.

Only 64-Bit Interrupt Gates in Long Mode. Only 64-bit interrupt gates
can be referenced in long mode (64-bit mode and compatibility
mode). The legacy 32-bit interrupt or trap gate types (0Eh or
0Fh) are redefined in long mode as the 64-bit interrupt- and
trap-gate types. No 32-bit interrupt or trap gate types exists in
long mode. If a reference is made to a 16-bit interrupt or trap
gate (06h or 07h), a general-protection exception, #GP(0), is
generated.

Stack Frame In legacy mode, the size of an IDT entry (16 bits or 32 bits)
determines the size of interrupt-stack-frame pushes, and
SS:eSP is pushed only on a CPL change. In long mode, the size
of interrupt stack-frame pushes is fixed at eight bytes, because
only long-mode gates can be referenced. Long mode also pushes
SS:RSP unconditionally, rather than pushing only on a CPL
change.

Aside from error codes, pushing SS:RSP unconditionally
presents operating systems with a consistent interrupt-stack-
frame size across all interrupts. Interrupt service-routine entry
points that handle interrupts generated by the INTn instruction
or external INTR# signal can push an error code for consistency.

Interrupt Stack Alignment. In legacy mode, the stack pointer is at
any alignment when an interrupt or exception causes a stack
frame to be pushed. Thus, the stack frame and succeeding
pushes done by the interrupt handler are at any arbitrary
alignment.

In long mode, the RSP is aligned to a 16-byte boundary before
pushing the stack frame. Thus, the stack frame itself will be
aligned on a 16-byte boundary when the interrupt handler is
entered. The processor can arbitrarily realign the new RSP on
interrupts because the previous (possibly unaligned) RSP is
unconditionally saved on the newly aligned stack. The previous
RSP will be automatically restored by the subsequent IRET.

The following pseudo-code for the processor’s interrupt delivery
mechanism illustrates how the RSP alignment is done:
System Programming 71

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
IntOrException:
 .
 .
 fetch IDT entry
 load new CS descriptor
 if (CPL change or IST<>0) get new RSP from TSS

if (LMA) rsp = rsp & ffff_ffff_ffff_fff0 ; align RSP

 push stack frame (always pushes SS:RSP in Long mode)
 .
 .
 exit to Interrupt Handler

Aligning the stack permits exception and interrupt frames to be
aligned on a 16-byte boundary before interrupts are re-enabled.
This allows the stack to be laid out for optimal storage of 16-
byte XMM registers. This ultimately enables the interrupt
handler to use the faster 16-byte aligned loads and stores
(MOVAPS) rather than unaligned accesses (MOVUPS) to save
and restore XMM registers. Efficiently saving and restoring the
XMM registers becomes more important as SSE is emphasized
over x87 for floating point.

Although the RSP alignment is done in all cases when LMA=1,
it is only of consequence for the kernel-mode case where there
is no stack switch or IST used. For a stack switch or IST, the OS
would have presumably put suitably aligned RSP values in the
TSS.

IRET IRET semantics change in long mode. IRET must be executed
with an 8-byte operand size. In 64-bit mode, SS:RSP is popped
unconditionally. In compatibility and legacy modes, SS:RSP is
popped only if the CPL changes.

Because interrupt stack-frame pushes are always eight bytes in
long mode, an IRET must pop eight byte items off the stack.
This is accomplished by preceding the IRET with a 64-bit
operand-size prefix.

IRET Handling of SS:RSP. IRET pops SS:RSP unconditionally off
the interrupt stack frame only when executed in 64-bit mode. In
compatibility mode, IRET pops SS:RSP off the stack only if
72 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
there is a CPL change. This allows legacy applications to run
properly in compatibility mode when using the IRET
instruction.

64-bit interrupt service routines that exit with an IRET
unconditionally pop SS:RSP off of the interrupt stack frame,
even if the target code segment is running in 64-bit mode or at
CPL=0. This is done because the original interrupt always
pushes SS:RSP.

IRET Allows Null SS Selector. In long mode, IRET is allowed to load
a null SS under certain conditions. If the target mode is 64-bit
mode and the target CPL<>3, IRET allows SS to be loaded with
a null selector.

As part of the stack switch mechanism, an interrupt or
exception sets the new SS to null, instead of fetching a new SS
selector from the TSS and loading the corresponding descriptor
from the GDT or LDT.

The new SS selector is set to null in order to properly handle
returns from subsequent nested far transfers. If the called
procedure itself is interrupted, the null SS is pushed on the
stack frame. On the subsequent IRET, the null SS on the stack
acts as a flag to tell the processor not to load a new SS
descriptor.

Stack Switching The legacy x86 architecture provides a mechanism to
automatically switch stack frames in response to an interrupt.
The long-mode architecture implements a slightly modified
version of the legacy stack-switching mechanism and an
alternative stack-switching mechanism called the interrupt
stack table (IST).

Stack Switches Legacy Mode and Long Mode. In legacy mode, the
legacy x86 stack-switch mechanism is unchanged. Legacy-mode
stack pointers consist of an SS:eSP pair (16-bit selector and a
16-bit or 32-bit offset). The operating system must create stack
pointers for privilege levels 0, 1 and 2 and store them in the
current TSS. In legacy mode, switching to a new privilege level
as the result of an interrupt causes the processor to
automatically perform a stack switch from the current stack to
the inner-level stack defined for the new privilege level. A new
SS:eSP pair is loaded from the TSS and the stack switch is
System Programming 73

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
initiated. After completing the stack switch, the processor
pushes the old SS:eSP pair onto the new stack so that the
subsequent IRETs restore the old stack.

In long mode, the legacy stack-switch mechanism is modified.
When stacks are switched as part of a long-mode privilege-level
change resulting from an interrupt, a new SS descriptor is not
loaded. Long mode only loads an inner-level RSP from the TSS.
The new SS selector is forced to null and the SS selector’s RPL
field is set to the new CPL.

The new SS is set to null in order to handle nested far transfers
(CALLF, INT, interrupts and exceptions).

The old SS and RSP are saved on the new stack, as shown in
Figure 24.On the subsequent IRET, the old SS is popped from
the stack and loaded into the SS register.

In summary, a stack switch in long mode works like the legacy
stack switch, except that a new SS selector is not loaded from
the TSS. Instead, the new SS is forced to null.

Figure 24. Long-Mode Stack Layout After Interrupt with CPL Change

Interrupt Stack Table. In long mode, a new interrupt stack table
(IST) mechanism is available as an alternative to the modified
legacy stack-switching mechanism described above. This IST
mechanism unconditionally switches stacks when it is enabled.
It can be enabled on an individual interrupt-vector basis via a
field in the IDT entry. Thus, some interrupt vectors can use the
modified legacy mechanism and others can use the IST

Legacy Mode (LMA=0) Long Mode (LMA=1)

Old SS +20 +40 Old SS

Old ESP +16 +32 Old RSP

EFLAGS +12 +24 RFLAGS

CS +8 +16 CS

EIP +4 +8 RIP

Error Code ESP RSP Error Code

4 Bytes 8 Bytes
74 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
mechanism. The IST mechanism is only available in long mode.
It is part of the long-mode TSS shown in Figure 22 on page 68.

The primary motivation for the IST mechanism is to provide a
method for specific interrupts, such as NMI, double-fault, and
machine-check, to always execute on a known good stack. In
legacy mode, interrupts can use the task-switch mechanism to
set up a known-good stack by accessing the interrupt service
routine through a task gate located in the IDT. However, the
legacy task-switch mechanism is not supported in long mode.

The IST mechanism is part of the long-mode task state segment
(TSS) shown in Figure 22 on page 68. It provides up to seven IST
pointers located in the TSS. The pointers are referenced by an
interrupt-gate descriptor in the interrupt-descriptor table
(IDT), as shown in Figure 23 on page 70. The gate descriptor
contains a 3-bit IST index field that provides an offset into the
IST section of the TSS.

If the IST index for an interrupt gate is not zero, the IST pointer
corresponding to the index is loaded into the RSP when an
interrupt occurs. The new SS selector is forced to null, and the
SS selector’s RPL field is set to the new CPL.

The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new
stack. Interrupt processing then proceeds as normal.

If the IST index is zero, the modified legacy stack-switching
mechanism described above is used.

Task Priority

The x86-64 architecture defines 15 external interrupt-priority
classes. Priority class 1 is the lowest and 15 is the highest. How
external interrupts are organized into these priority classes is
implementation-dependent.

Operating systems can use the TPR to temporarily block
specific (generally low-priority) interrupts from interrupting a
high-priority task. This is accomplished by loading TPR with a
value corresponding to the highest-priority interrupt that is to
be blocked. For example, loading TPR with a value of 9 (1001b)
blocks all interrupts with a priority of 9 or less, while allowing
all interrupts with a priority of 10 or more to be recognized.
Loading TPR with 0 enables all external interrupts. Loading
System Programming 75

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
TPR with 15 (1111b) disables all external interrupts. The TPR
is cleared to 0 on reset.

Software can read and write the TPR using a MOV CR8
instruction. The new priority level is established when the MOV
instruction completes execution. Software does not need to
force serialization after loading TPR. Consider, for example,
two sequential TPR loads, in which a low value is first loaded
into TPR and immediately followed by a load of a higher value.
Any pending, lower-priority interrupt enabled by the first MOV
to TPR is recognized between the two MOVs.

Use of the MOV CRn instruction requires a privilege level of 0.
Programs running at any other privilege level cannot read or
write the TPR. An attempt to do so results in a general-
protection exception, #GP(0).

The TPR is abstracted from the interrupt controller (IC), which
prioritizes and manages external interrupt delivery to the
processor. The IC can be an external device, such as an 8259, or
it can be integrated on-chip l ike the local advanced
programmable interrupt controller (APIC). Typically, the IC
contains a priority mechanism similar, if not identical to, the
TPR. The IC, however, is considered implementation-
dependent, with the underlying priority mechanisms subject to
change.

The TPR, by contrast, is part of the x86-64 architecture.
Software can depend on this definition remaining unchanged.

Effect of IC on TPR. The features of the implementation-specific
IC can impact the operation of the TPR. For example, the TPR
might affect interrupt delivery only if the IC is enabled. Also,
the mapping of an external interrupt to a specific interrupt
priority is an implementation-specific behavior of the IC.

See Appendix D, "Implementation Considerations"‚ on
page 124 for information on the implementation-specific IC in
the first implementation of the Hammer family of processors.
76 System Programming

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Appendix A Integer Instructions in 64-Bit Mode

This appendix provides details of the general-purpose
instructions in 64-bit mode, and its differences from legacy and
compatibility modes. The appendix covers only the general-
purpose instructions . It does not cover the 128-bit media, 64-bit
media, or x87 floating-point instructions, because those
instructions are not affected by 64-bit mode, other than in the
access by such instructions to extended GPR and XMM
registers when using a REX prefix.

A.1 General Rules for 64-Bit Mode

In 64-bit mode, the following general rules apply to changes in
instructions and their operands:

■ “Promoted to 64 Bit”: If an instruction’s operand size in
legacy mode (16-bit or 32-bit) depends on the effective
operand size (thus, dependent on CS.D and prefix
overrides), then the operand-size choices are extended in 64-
bit mode from 16-bit and 32-bit to include 64 bits, or the
operand size is fixed at a size that supports 64-bit operands.
Such instructions are said to be “Promoted to 64 bits” in
Table 15 on page 79. However, byte-operand opcodes of such
instructions are not promoted.

■ Byte-Operand Opcodes Not Promoted: As stated above in
“Promoted to 64 Bit”, byte-operand opcodes of promoted
instructions are not promoted. Those opcodes continue to
operate only on bytes.

■ Fixed Operand Size: If an instruction’s operand size is fixed
in legacy mode (thus, independent of CS.D and prefix
overrides), that operand size is usually fixed at the same size
in 64-bit mode. For example, CPUID operates on the same-
sized operand in legacy mode and 64-bit mode. (There are
some exceptions, however. For example, BSWAP.)

■ Default Operand Size: The default operand size for most
instructions is 32 bits, and a REX prefix must be used to
change the operand size to 64 bits. However, two groups of
instructions default to 64-bit operand size and do not need a
REX prefix: (1) near branches and (2) all instructions,
except far branches, that implicitly reference the RSP. See
77

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Table 19 on page 108 for a list of all instructions that default
to 64-bit operand size.

■ Zero-Extension of 32-Bit Results: Operations on 32-bit
operands in 64-bit mode zero-extend the high 32 bits of 64-
bit GPR destination registers.

■ No Extension of 8-Bit and 16-Bit Results: Operations on 8-bit
and 16-bit operands in 64-bit mode leave the high 56 or 48
bits, respectively, of 64-bit GPR destination registers
unchanged.

■ Shifts and Rotates with 64-Bit Operand Size: When the
operand size is 64 bits, shifts and rotates use one additional
bit (6 bits total) to specify shift-count or rotate-count,
allowing 64-bit shifts and rotates.

■ Immediates: The maximum size of immediate operands
remains 32 bits, except that 64-bit immediates can be
MOVed into 64-bit GPRs. When the operand size is 64 bits,
immediates are sign-extended to 64 bits prior to using them.

■ Branch Displacements: Branch-address displacements
remains 8 bits or 32 bits, but they are sign-extended to 64
bits prior to using them.

■ Undefined High 32 Bits After Mode Change: The processor
does not preserve the upper 32 bits of the 64-bit GPRs across
switches from 64-bit mode to compatibility or legacy modes.
In compatibility or legacy mode, the upper 32 bits of the
GPRs are undefined and not accessible to software.

A.2 Operation and Operand Size in 64-Bit Mode

Table 15 on page 79 lists the integer instructions, showing
operand size in 64-bit mode and the state of the high 32 bits of
destination registers when 32-bit operands are used. Opcodes,
such as byte-operand versions of several instructions, that do
not appear in Table 15 on page 79 are covered by the general
rules described in above.
78

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
Table 15. Operations and Operands in 64-Bit Mode

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

AAA - ASCII Adjust after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

37

AAD - ASCII Adjust AX before Division
INVALID IN 64-BIT MODE (invalid-opcode exception)

D5

AAM - ASCII Adjust AX after Multiply
INVALID IN 64-BIT MODE (invalid-opcode exception)

D4

AAS - ASCII Adjust AL after Subtraction
INVALID IN 64-BIT MODE (invalid-opcode exception)

3F

ADC—Add with Carry

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

11

13

15

81 /2

83 /2

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
79

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
ADD—Signed or Unsigned Add

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

01

03

05

81 /0

83 /0

AND—Logical AND

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

21

23

25

81 /4

83 /4

ARPL - Adjust Requestor Privilege Level
INVALID IN 64-BIT MODE (invalid-opcode exception)

63

BOUND - Check Array Against Bounds
INVALID IN 64-BIT MODE (invalid-opcode exception)

62

BSF—Bit Scan Forward
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.0F BC

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
80

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
BSR—Bit Scan Reverse
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.0F BD

BSWAP—Byte Swap Promoted to
64 bits.

32 bits
Zero-extends 32-bit
register results to
64 bits.0F C8

BT—Bit Test
Promoted to
64 bits. 32 bits No GPR register

results.0F A3

0F BA /4

BTC—Bit Test and Complement
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

0F BA /7

0F BB

BTR—Bit Test and Reset
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

0F B3

0F BA /6

BTS—Bit Test and Set
Promoted to
64 bits. 32 bits No GPR register

results.0F AB

0F BA /5

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
81

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
CALL—Procedure Call Near See "Near Branches" on page 27 .

E8
Promoted to
64 bits.

Operand size
fixed at 64 bits.

RIP = RIP + 32-bit displacement sign-
extended to 64 bits.

FF /2 Promoted to
64 bits.

Operand size
fixed at 64 bits.

RIP = 64-bit offset from register or
memory.

CALL—Procedure Call Far See "Far Branches Through Long-Mode Call Gates" on page 27 .

9A INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /3 Promoted to
64 bits.

32 bits

If selector points to
a gate, then RIP =
zero-extended 32-
bit offset from gate,
else RIP = zero-
extended 32-bit
offset from far
pointer referenced
in instruction.

If selector points to
a gate, then RIP =
64-bit offset from
gate, else RIP =
zero-extended 32-
bit offset from far
pointer referenced
in instruction.

CBW, CWDE, CDQE—Convert Byte to Word,
Convert Word to Doubleword, Convert
Doubleword to Quadword

Promoted to
64 bits.

32 bits
(size of desti-

nation register)

CWDE: Converts
word to
doubleword.

Zero-extends EAX
to RAX.

CDQE (new
mnemonic):
Converts
doubleword to
quadword.

RAX = sign-
extended EAX.

98

CDQ see CWD, CDQ, CQO

CDQE (new mnemonic) see CBW, CWDE, CDQE

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
82

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
CDWE see CBW, CWDE, CDQE

CLC—Clear Carry Flag Same as legacy
mode. Not relevant. No GPR register results.

F8

CLD—Clear Direction Flag Same as legacy
mode. Not relevant. No GPR register results.

FC

CLFLUSH—Cache Line Invalidate Same as legacy
mode. Not relevant. No GPR register results.

0F AE /7

CLI—Clear Interrupt Flag Same as legacy
mode. Not relevant. No GPR register results.

FA

CLTS—Clear Task-Switched Flag in CR0 Same as legacy
mode. Not relevant. No GPR register results.

0F 06

CMC—Complement Carry Flag Same as legacy
mode. Not relevant. No GPR register results.

F5

CMOVcc—Conditional Move
Promoted to
64 bits.

32 bits
Zero-extends 32-bit
register results to
64 bits.

0F 42 through 0F 47

0F 4C through 0F 4F

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
83

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
CMP—Compare

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

39

3B

3D

81 /7

83 /7

CMPS, CMPSB, CMPSW, CMPSD,
CMPSQ—Compare Strings

Promoted to
64 bits. 32 bits

CMPSD: Compare
String
Doublewords.

See footnote5

CMPSQ (new
mnemonic):
Compare String
Quadwords

See footnote5
A7

CMPXCHG—Compare and Exchange Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.0F B1

CMPXCHG8B—Compare and Exchange Eight
Bytes Same as legacy

mode.
Operand size

fixed at 64 bits.
Zero-extends EDX
and EAX to 64 bits.

0F C7 /1

CPUID—Processor Identification Same as legacy
mode.

Operand size
fixed at 32 bits.

Zero-extends 32-bit register results to 64
bits. 0F A2

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
84

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
CQO (new mnemonic) see CWD, CDQ, CQO

CWD, CDQ, CQO—Convert Word to
Doubleword, Convert Doubleword to
Quadword, Convert Quadword to Octword

Promoted to
64 bits.

32 bits
(size of desti-

nation register)

CDQ: Converts
doubleword to
quadword.

Sign-extends EAX to
EDX. Zero-extends
EDX to RDX. EAX is
unchanged.

CQO (new
mnemonic):
Converts quadword
to octword.

Sign-extends RAX
to RDX. RAX is
unchanged.

99

DAA - Decimal Adjust AL after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

27

DAS - Decimal Adjust AL after Subtraction
INVALID IN 64-BIT MODE (invalid-opcode exception)

2F

DEC—Decrement by 1
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.FF /1

48 through 4F Opcode Used as REX prefix

DIV—Unsigned Divide
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

RDX:RAX contain a
64-bit quotient
(RAX) and 64-bit
remainder (RDX).

F7 /6

ENTER—Create Procedure Stack Frame Promoted to
64 bits. 64 bits Can’t encode4

C8

HLT—Halt Same as legacy
mode. Not relevant. No GPR register results.

F4

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
85

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
IDIV—Signed Divide
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

RDX:RAX contain a
64-bit quotient
(RAX) and 64-bit
remainder (RDX).

F7 /7

IMUL - Signed Multiply

Promoted to
64 bits.

32 bits
Zero-extends 32-bit
register results to
64 bits.

F7 /5
RDX:RAX = RAX *
reg/mem64
(i.e., 128-bit result)

0F AF reg64 = reg64 *
reg/mem64

69
reg64 =
reg/mem64 *
imm32

6B reg64 =
reg/mem64 * imm8

IN—Input From Port
Same as legacy
mode.

32 bits Zero-extends 32-bit register results to 64
bits.

E5

ED

INC—Increment by 1
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.FF /0

40 through 47 Opcode Used as REX prefix

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
86

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
INS, INSB, INSD, INSW—Input String

Same as legacy
mode. 32 bits

INSD: Input String Doublewords.

Zero-extends 32-bit register results to 64
bits.

See footnote5
6D

INT n—Interrupt to Vector

Promoted to
64 bits.

Not relevant. See Section , "Interrupts"‚ on page 66 .
CD

INT3—Interrupt to Debug Vector

CC

INTO - Interrupt to Overflow Vector
INVALID IN 64-BIT MODE (invalid-opcode exception)

CE

INVD—Invalidate Internal Caches Same as legacy
mode.

Not relevant. No GPR register results.
0F 08

INVLPG—Invalidate TLB Entry Promoted to
64 bits.

Not relevant. No GPR register results.
0F 01 /7

IRET, IRETD, IRETQ—Interrupt Return Promoted to
64 bits.

32 bits See Section , "IRET"‚ on page 69.
CF

Jcc—Jump Conditional See "Near Branches" on page 27.

70 through 7F Promoted to
64 bits.

Operand size
fixed at 64 bits.

RIP = RIP + 8-bit or 32-bit displacement
sign-extended to 64 bits. 0F 80 through 0F 8F

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
87

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
JCXZ, JECXZ—Jump on CX/ECX Zero
Promoted to
64 bits.

Operand size
fixed at 64 bits.

RIP = RIP + 8-bit displacement sign-
extended to 64 bits.

See footnote5E3

JMP—Jump Near See "Near Branches" on page 27.

EB

Promoted to
64 bits.

Operand size
fixed at 64 bits.

RIP = RIP + 8-bit displacement sign-
extended to 64 bits.

E9

RIP = RIP + 32-bit displacement sign-
extended to 64 bits. (16-bit displacement
size cannot be encoded, because
operand size is fixed at 64 bits.)

FF /4 RIP = 64-bit offset from register or
memory.

JMP—Jump Far See "Far Branches Through Long-Mode Call Gates" on page 27.

EA INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /5
Promoted to
64 bits. 32 bits

If selector points to
a gate, then RIP =
zero-extended 32-
bit offset from gate,
else RIP = zero-
extended 32-bit
offset from far
pointer referenced
in instruction.

If selector points to
a gate, then RIP =
64-bit offset from
gate, else RIP =
zero-extended 32-
bit offset from far
pointer referenced
in instruction.

LAHF - Load Status Flags into AH Register
INVALID IN 64-BIT MODE (invalid-opcode exception)

9F

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
88

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
LAR—Load Access Rights Byte Same as legacy
mode. 32 bits Zero-extends 32-bit register results to 64

bits. 0F 02

LDS - Load DS Segment Register
INVALID IN 64-BIT MODE (invalid-opcode exception)

C5

LEA—Load Effective Address
Promoted to
64 bits. 32

Zero-extends 32-bit
register results to
64 bits.8D

LEAVE—Delete Procedure Stack Frame Promoted to
64 bits. 64 bits Can’t encode4

C9

LES - Load ES Segment Register
INVALID IN 64-BIT MODE (invalid-opcode exception)

C4

LFENCE—Load Fence Same as legacy
mode. Not relevant. No GPR register results.

0F AE /5

LFS—Load FS Segment Register Same as legacy
mode. 32 bits

Zero-extends 32-bit register results to 64
bits.0F B4

LGDT—Load Global Descriptor Table Register Promoted to
64 bits.

Operand size
fixed at 8+2

bytes.

No GPR register results.

Loads 8-byte base and 2-byte limit.0F 01 /2

LGS—Load GS Segment Register Same as legacy
mode. 32 bits

Zero-extends 32-bit register results to 64
bits.0F B5

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
89

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
LIDT—Load Interrupt Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 8+2

bytes.

No GPR register results.

Loads 8-byte base and 2-byte limit.
0F 01 /3

LLDT—Load Local Descriptor Table Register
Promoted to
64 bits.

Operand size
fixed at 16 bits.

No GPR register results.

References 64-bit-mode descriptor to
load 64-bit base.0F 00 /2

LMSW—Load Machine Status Word Same as legacy
mode.

Operand size
fixed at 16 bits. No GPR register results.

0F 01 /6

LODS, LODSB, LODSW, LODSD, LODSQ—
Load String

Promoted to
64 bits.

32 bits

LODSD: Load String
Doublewords.
Zero-extends 32-bit
register results to
64 bits.

See footnote5

LODSQ (new
mnemonic): Load
String Quadwords.

See footnote5AD

LOOP—Loop

Promoted to
64 bits.

Operand size
fixed at 64 bits.

RIP = RIP + 8-bit displacement sign-
extended to 64 bits.

See footnote5

E2

LOOPZ, LOOPE—Loop if Zero/Equal

E1

LOOPNZ, LOOPNE—Loop if Not Zero/Equal

E0

LSL—Load Segment Limit Same as legacy
mode. 32 bits

Zero-extends 32-bit
register results to
64 bits.0F 03

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
90

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
LSS —Load SS Segment Register Same as legacy
mode. 32 bits Zero-extends 32-bit register results to 64

bits.0F B2

LTR—Load Task Register
Promoted to
64 bits.

Operand size
fixed at 16 bits.

No GPR register results.

References 64-bit-mode descriptor to
load 64-bit base.0F 00 /3

MFENCE—Memory Fence Same as legacy
mode. Not relevant. No GPR register results.

0F AE /6

MOV—Move

Promoted to
64 bits.

32 bits

Zero-extends 32-bit
register results to
64 bits.

89

8B

C7

B8 64-bit immediate.

A1 (moffset) Zero-extends 32-bit
register results to
64 bits.

Memory offsets are
address-sized and
default to 64 bits.

Memory offsets are
address-sized and
default to 64 bits. A3 (moffset)

MOV—Move to/from Control Registers
Promoted to
64 bits.

Operand size
fixed at 64 bits.

The high 32 bits of control registers
differ in their writablility and reserved
status. See Section , "Control Registers"‚
on page 33 for details.

0F 22

0F 20

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
91

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
MOV—Move to/from Debug Registers
Promoted to
64 bits.

Operand size
fixed at 64 bits.

The high 32 bits of debug registers differ
in their writablility and reserved status.
See "Debug Registers" on page 34 for
details.

0F 21

0F 23

MOV—Move to/from Segment Registers
Same as legacy
mode.

32 bits
Zero-extends 32-bit
register results to
64 bits.

8C

8E

MOVD—Move Doubleword

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

0F 6E

0F 7E

66 0F 6E Zero-extends 32-bit
register results to
128 bits.

Zero-extends 64-bit
register results to
128 bits.66 0F 7E

MOVNTI—Move Non-Temporal Doubleword Promoted to
64 bits. 32 bits No GPR register results.

0F C3

MOVS, MOVSB, MOVSW, MOVSD,
MOVSQ—Move String

Promoted to
64 bits.

32 bits

MOVSD: Move
String
Doublewords.

Zero-extends 32-bit
register results to
64 bits.

See footnote5

MOVSQ (new
mnemonic): Move
String Quadwords.

See footnote5A5

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
92

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
MOVSX—Move with Sign-Extend

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

0F BE
Moves byte to
quadword.

0F BF Moves word to
quadword.

MOVSXD—Move with Sign-Extend
Doubleword

New
instruction,
available only
in 64-bit mode.
(In other
modes, this
opcode is ARPL
instruction.)

32 bits
Zero-extends 32-bit
register results to
64 bits.

Sign-extends 32 bit
register results to
64 bits.63

MOVZX—Move with Zero-Extend

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

0F B6
Moves byte to
quadword.

0F B7 Moves word to
quadword.

MUL—Multiply Unsigned Promoted to
64 bits.

32 bits
Zero-extends 32-bit
register results to
64 bits.

RDX:RAX=RAX *
quadword in
register or memory. F7 /4

NEG—Negate Two’s Complement Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.F7 /3

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
93

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
NOP—No Operation Same as legacy
mode. Not relevant. No GPR register results.

90

NOT—Negate One’s Complement
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.F7 /2

OR—Logical OR

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

09

0B

0D

81 /1

83 /1

OUT—Output to Port
Same as legacy
mode. 32 bits No GPR register results.E7

EF

OUTS, OUTSB, OUTSD, OUTSW—Output
String Same as legacy

mode. 32 bits

OUTSD: Output String Doublewords.

No GPR register results.

See footnote56F

POP—Pop Stack
Promoted to
64 bits. 64 bits Can’t encode48F /0

58 through 5F

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
94

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
POP—Pop (segment register from) Stack
Same as legacy
mode.

64 bits Can’t encode40F A1 (POP FS)

0F A9 (POP GS)

1F (POP DS)

INVALID IN 64-BIT MODE (invalid-opcode exception)07 (POP ES)

17 (POP SS)

POPA, POPAD - Pop All to GPR Words or
Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

61

POPF, POPFD, POPFQ—Pop to RFLAGS
Word, Doublword, or Quadword

Promoted to
64 bits. 64 bits Can’t encode4

POPFQ (new
mnemonic): Pops
64 bits off stack,
writes low 32 bits
into EFLAGS and
zero-extends the
high 32 bits of
RFLAGS.

9D

PREFETCH—Prefetch L1 Data-Cache Line Same as legacy
mode. Not relevant. No GPR register results.

0F 0D /0

PREFETCHlevel—Prefetch Data to Cache
Level level Same as legacy

mode. Not relevant. No GPR register results.

0F 18 /0-3

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
95

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
PREFETCHW—Prefetch L1 Data-Cache Line
for Write Same as legacy

mode. Not relevant. No GPR register results.

0F 0D /1

PUSH—Push onto Stack

Promoted to
64 bits. 64 bits Can’t encode4

FF /6

50 through 57

6A

68

PUSH—Push (segment register) onto Stack
Promoted to
64 bits. 64 bits Can’t encode40F A0 (PUSH FS)

0F A8 (PUSH GS)

0E (PUSH CS)

INVALID IN 64-BIT MODE (invalid-opcode exception)
1E (PUSH DS)

06 (PUSH ES)

16 (PUSH SS)

PUSHA, PUSHAD - Push All to GPR Words or
Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

60

PUSHF, PUSHFD, PUSHFQ—Push RFLAGS
Word, Doubleword, or Quadword onto Stack Promoted to

64 bits. 64 bits Can’t encode4

PUSHFQ (new
mnemonic): Pushes
the 64-bit RFLAGS
register. 9C

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
96

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
RCL—Rotate Through Carry Left

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /2

D3 /2

C1 /2

RCR—Rotate Through Carry Right

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /3

D3 /3

C1 /3

RDMSR—Read Model-Specific Register
Same as legacy
mode. Not relevant.

RDX[31:00] contains MSR[63:32],
RAX[31:00] contains MSR[31:00]. Zero-
extends 32-bit register results to 64 bits. 0F 32

RDPMC—Read Performance-Monitoring
Counters Same as legacy

mode. Not relevant.
RDX[31:00] contains MSR[63:32],
RAX[31:00] contains MSR[31:00]. Zero-
extends 32-bit register results to 64 bits. 0F 33

RDTSC—Read Time-Stamp Counter
Same as legacy
mode. Not relevant.

RDX[31:00] contains MSR[63:32],
RAX[31:00] contains MSR[31:00]. Zero-
extends 32-bit register results to 64 bits. 0F 31

REP INS—Repeat Input String Same as legacy
mode. 32 bits See footnote5

F3 6D

REP LODS—Repeat Load String
Promoted to
64 bits. 32 bits

Zero-extends EAX,
to 64 bits.

See footnote5
See footnote5

F3 AD

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
97

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
REP MOVS—Repeat Move String Promoted to
64 bits. 32 bits See footnote5

F3 A5

REP OUTS—Repeat Output String to Port Same as legacy
mode. 32 bits See footnote5

F3 6F

REP STOS—Repeat Store String Promoted to
64 bits. 32 bits See footnote5

F3 AB

REPx CMPS —Repeat Compare String Promoted to
64 bits. 32 bits See footnote5

F3 A7

REPx SCAS —Repeat Scan String
Promoted to
64 bits. 32 bits

Zero-extends EAX,
to 64 bits.

See footnote5
See footnote5

F3 AF

RET—Return from Call Near See "Near Branches" on page 27.

C2 Promoted to
64 bits.

Operand size
fixed at 64 bits. No GPR results.

C3

RET—Return from Call Far
Promoted to
64 bits. 32 bits

See "Privilege-Level Changes and Stack
Switching" on page 60. CB

CA

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
98

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
ROL—Rotate Left

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /0

D3 /0

C1 /0

ROR—Rotate Right

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /1

D3 /1

C1 /1

RSM—Resume from System Management
Mode New SMM

state-save area. Not relevant.

0F AA

SAHF - Store AH into Flags
INVALID IN 64-BIT MODE (invalid-opcode exception)

9E

SAL—Shift Arithmetic Left

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /4

D3 /4

C1 /4

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
99

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
SAR—Shift Arithmetic Right

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /7

D3 /7

C1 /7

SBB—Subtract with Borrow

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

19

1B

1D

81 /3

83 /3

SCAS, SCASB, SCASW, SCASD, SCASQ—
Scan String

Promoted to
64 bits.

32 bits

SCASD: Scan String
Doublewords.

Zero-extends 32-bit
register results to
64 bits.

See footnote5

SCASQ (new
mnemonic): Scan
String Quadwords.

See footnote5
AF

SETcc—Byte Set if Condition Same as legacy
mode.

Operand size
fixed at 8 bits. 0F 90 through 0F 9F

SFENCE—Store Fence Same as legacy
mode. Not relevant. No GPR register results.

0F AE /7

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
100

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
SGDT—Store Global Descriptor Table Register Promoted to
64 bits.

Operand fixed
at 8+2 bytes.

No GPR register results.

Stores 8-byte base and 2-byte limit.0F 01 /0

SHL—Shift Left

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /4

D3 /4

C1 /4

SHLD—Shift Left Double
Promoted to
64 bits.

32 bits
Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count. 0F A4

0F A5

SHR—Shift Right

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count.
D1 /5

D3 /5

C1 /5

SHRD—Shift Right Double
Promoted to
64 bits.

32 bits
Zero-extends 32-bit
register results to
64 bits.

Uses 6-bit count. 0F AC

0F AD

SIDT—Store Interrupt Descriptor Table
Register Promoted to

64 bits.
Operand fixed
at 8+2 bytes.

No GPR register results.

Stores 8-byte base and 2-byte limit.
0F 01 /1

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
101

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
SLDT—Store Local Descriptor Table Register Same as legacy
mode. 32 Zero-extends 2-byte LDT selector to 64

bits. 0F 00 /0

SMSW—Store Machine Status Word Same as legacy
mode. 32 Zero-extends 2-byte MSW to 64 bits.

0F 01 /4

STC—Set Carry Flag Same as legacy
mode. Not relevant. No GPR register results.

F9

STD—Set Direction Flag Same as legacy
mode. Not relevant. No GPR register results.

FD

STI - Set Interrupt Flag Same as legacy
mode. Not relevant. No GPR register results.

FB

STOS, STOSB, STOSW, STOSD, STOSQ-
Store String

Promoted to
64 bits. 32 bits

STOSD: Store String
Doublewords.

See footnote5

STOSQ (new
mnemonic): Store
String Quadwords.

See footnote5
AB

STR—Store Task Register Same as legacy
mode. 32 Zero-extends 2-byte TR selector to 64

bits. 0F 00 /1

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
102

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
SUB—Subtract

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

29

2B

2D

81 /5

83 /5

SWAPGS—Swap GS Register with
KernelGSbase MSR

New
instruction,
available only
in 64-bit mode.
(In other
modes, this
opcode is
invalid.)

Not relevant See "SwapGS Instruction" on page 112.

0F 01 /7 r/m=000

SYSCALL—Fast System Call Promoted to
64 bits. Not relevant. See Section , "SYSCALL and SYSRET"‚ on

page 61.0F 05

SYSENTER—System Call
INVALID IN LONG MODE (invalid-opcode exception)

0F 34

SYSEXIT—System Return
INVALID IN LONG MODE (invalid-opcode exception)

0F 35

SYSRET—Fast System Return Promoted to
64 bits. 32 bits See Section , "SYSCALL and SYSRET"‚ on

page 61 .0F 07

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
103

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
TEST—Test Bits

Promoted to
64 bits. 32 bits No GPR register results.

85

A9

F7 /0

UD2—Undefined Operation Same as legacy
mode. Not relevant. No GPR register results.

0F 0B

VERR—Verify Segment for Reads Same as legacy
mode.

Operand size
fixed at 16 bits No GPR register results.

0F 00 /4

VERW—Verify Segment for Writes Same as legacy
mode.

Operand size
fixed at 16 bits No GPR register results.

0F 00 /5

WAIT—Wait for Interrupt Same as legacy
mode. Not relevant. No GPR register results.

9B

WBINVD—Writeback and Invalidate All
Caches Same as legacy

mode. Not relevant. No GPR register results.

0F 09

WRMSR—Write to Model-Specific Register
Same as legacy
mode. Not relevant.

No GPR register results.

MSR[63:32] = RDX[31:00]
MSR[31:00] = RAX[31:00]0F 30

XADD—Exchange and Add
Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.0F C1

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
104

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
A.3 Invalid Instructions in 64-Bit Mode

Table 16 on page 106 lists instructions that are illegal in 64-bit
mode. Attempted use of these instructions generates an invalid-
opcode exception (#UD).

Table 17 on page 107 lists instructions that are reassigned to
different functions in 64-bit mode. Attempted use of these
instructions generates the reassigned function.

XCHG—Exchange Register/Memory with
Register

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.87

90

XLAT, XLATB - Table Look-up Translation Same as legacy
mode.

Operand size
fixed at 8 bits. Writes AL, preserves RAX[63:08].

D7

XOR—Logical Exclusive OR

Promoted to
64 bits. 32 bits

Zero-extends 32-bit
register results to
64 bits.

31

33

35

81 /6

83 /6

Table 15. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)6

Type of
Operation1

Default
Operand Size2

For 32-Bit
Operand Size3

For 64-Bit
Operand Size3

Note:
1. The type of operation, excluding considerations of operand size or extension of results. See Section A.1, "General Rules for 64-Bit

Mode"‚ on page 77 for definitions of “Promoted to 64 bits” and related topics.
2. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size is defaults to 64 bits. If the

operand size is fixed, operand-size overrides are silently ignored.
3. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not source

operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination registers
unchanged. Immediates and branch displacements are sign-extended to 64 bits.

4. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.
5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer

and count registers are zero-extended to 64 bits.
6. See Appendix A.1, "General Rules for 64-Bit Mode"‚ on page 77, for opcodes that do not appear in this table.
105

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Table 18 on page 107 lists instructions that are illegal in long
mode. Attempted use of these instructions generates an invalid-
opcode exception (#UD).

Table 16. Invalid Instructions in 64-Bit Mode

Mnemonic Opcode (hex) Description

AAA 37 ASCII Adjust After Addition

AAD D5 ASCII Adjust Before Division

AAM D4 ASCII Adjust After Multiply

AAS 3F ASCII Adjust After Subtraction

ARPL 63 Adjust Requestor Privilege Level

BOUND 62 Check Array Bounds

CALL (far) 9A Procedure Call Far (far absolute)

DAA 27 Decimal Adjust after Addition

DAS 2F Decimal Adjust after Subtraction

INTO CE Interrupt to Overflow Vector

JMP (far) EA Jump Far (absolute)

LAHF 9F Load Status Flags into AH Register

LDS C5 Load DS Segment Register

LES C4 Load ES Segment Register

POP DS 1F Pop Stack into DS Segment

POP ES 07 Pop Stack into ES Segment

POP SS 17 Pop Stack into SS Segment

POPA, POPAD 61 Pop All to GPR Words or Doublewords

PUSH CS 0E Push CS Segment Selector onto Stack

PUSH DS 1E Push DS Segment Selector onto Stack

PUSH ES 06 Push ES Segment Selector onto Stack

PUSH SS 16 Push SS Segment Selector onto Stack

PUSHA, PUSHAD 60 Push All to GPR Words or Doublewords
106

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
A.4 Instructions with 64-Bit Default Operand Size in 64-Bit Mode

In 64-bit mode, two groups of instructions have an operand-size
default of 64 bits and thus do not need a REX prefix for this
operand size:

■ Near branches. See "Near Branches" on page 27 for details.

■ All instructions, except far branches, that implicitly
reference the RSP. See "Default 64-Bit Operand Size" on
page 26 for details.

Table 19 on page 108 lists these instructions.

SAHF 9E Store AH into Flags

Redundant Grp1
(undocumented) 82 Redundant encoding of group1 Eb,Ib opcodes

SALC
(undocumented) D6 Set AL According to CF

Table 17. Reassigned Instructions in 64-Bit Mode

Mnemonic Opcode (hex) Description

DEC and INC 40-4F

Decrement by 1, Increment by 1 a (see
"Implications for INC and DEC Instructions" on
page 22). Two-byte versions of DEC and INC are
still valid.

Table 18. Invalid Instructions in Long Mode

Mnemonic Opcode (hex) Description

SYSENTER 0F 34 System Call

SYSEXIT 0F 35 System Return

Table 16. Invalid Instructions in 64-Bit Mode (continued)

Mnemonic Opcode (hex) Description
107

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Table 19. Instructions with 64-Bit Default Operand Size in 64-Bit Mode

Mnemonic Opcode
(hex) Overridable? Description

CALL E8, FF/2 no Call Procedure Near

ENTER C8 yes1 Create Procedure Stack Frame

Jcc many no Jump Conditional Near

JMP E9, EB, FF/4 no Jump Near

LEAVE C9 yes1 Delete Procedure Stack Frame

LOOP E2 no Loop

LOOPcc E0, E1 no Loop Conditional

POP reg/mem 8F/0 yes1 Pop Stack (register or memory)

POP reg 58-5F yes1 Pop Stack (register)

POP FS 0F A1 yes1 Pop Stack into FS Segment Register

POP GS 0F A9 yes1 Pop Stack into GS Segment Register

POPF, POPFD,
POPFQ 9D yes1 Pop to RFLAGS Word, Doubleword,

or Quadword

PUSH imm32 68 yes1 Push onto Stack (sign-extended
doubleword)

PUSH imm8 6A yes1 Push onto Stack (sign-extended
byte)

PUSH reg/mem FF/6 yes1 Push onto Stack (register or
memory)

PUSH reg 50-57 yes1 Push onto Stack (register)

PUSH FS 0F A0 yes1 Push FS Segment Register onto
Stack

Note:
1. Overridable instructions are those that implicitly reference the RSP. These can be overridden to

16-bit, but not 32-bit, operand size (there is no prefix for a 32-bit override). Non-overridable
instructions are near branches. Attempts to override them are silently ignored.
108

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
The 64-bit default operand size can be overridden to 16 bits
using the 66h operand-size override. However, it is not possible
to override the operand size to 32 bits because there is no 32-bit
operand-size override prefix for 64-bit mode. See "Operand-
Size Override" on page 5 for details.

A.5 Single-Byte INC and DEC Instructions in 64-Bit Mode

In 64-bit mode, the legacy encodings for the 16 single-byte INC
and DEC instructions (one for each of the eight GPRs) are used
to encode the REX prefix values, as described in "REX
Prefixes" on page 11. The functionality of these INC and DEC
instructions is still available, however, using the ModRM forms
of those instructions (opcodes FF /0 and FF /1).

A.6 NOP in 64-Bit Mode

Programs written for the legacy x86 architecture commonly use
opcode 90h (the XCHG EAX, EAX instruction) as a one-byte
NOP. In 64-bit mode, the processor treats opcode 90h specially
in order to preserve this legacy NOP use. Without special
handling in 64-bit mode, the instruction would not be a true no-
operation. Therefore, in 64-bit mode the processor treats XCHG
EAX, EAX as a true NOP, regardless of operand size or the
presence of a REX prefix.

This special handling does not apply to the two-byte ModRM
form of the XCHG instruction. Unless a 64-bit operand size is
specified using a REX prefix byte, using the two byte form of

PUSH GS 0F A8 yes1 Push GS Segment Register onto
Stack

PUSHF, PUSHFD,
PUSHFQ 9C yes1 Push RFLAGS Word, Doubleword,

or Quadword onto Stack

RET C3, C2 no Return From Call (near)

Table 19. Instructions with 64-Bit Default Operand Size in 64-Bit Mode

Mnemonic Opcode
(hex) Overridable? Description

Note:
1. Overridable instructions are those that implicitly reference the RSP. These can be overridden to

16-bit, but not 32-bit, operand size (there is no prefix for a 32-bit override). Non-overridable
instructions are near branches. Attempts to override them are silently ignored.
109

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
XCHG to exchange a register with itself will not result in a no-
operation, because the default operation size is 32 bits in 64-bit
mode.

A.7 Segment Override Prefixes in 64-Bit Mode

In 64-bit mode, the DS, ES, SS and CS segment-override
prefixes have no effect. These four prefixes are no longer
treated as segment-override prefixes in the context of multiple-
prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true
segment-override prefixes in 64-bit mode. Use of the FS and GS
prefixes cause their respective segment bases to be added to
the effective address calculation. See "Special Treatment of FS
and GS Segments" on page 42 for details.

A.8 MOVSXD

MOVSXD is a new instruction in 64-bit mode. It reads a fixed-
size 32-bit source operand (register or memory) and sign-
extends the value to 64 bits. MOVSXD is analogous to the
existing MOVSXB and MOVSXW instructions.

Table 20 on page 110 shows the encoding of MOVSXD. The
actual size of the result written to the destination depends on
the effective operand size. A REX prefix selects a 64-bit
operand size, as described in "REX Prefixes" on page 18.

A.9 FXSAVE and FXRSTOR

The FXSAVE and FXRSTOR instructions are used to save and
restore the entire FPU and MMX environment during a context
switch. The legacy x86 FPU and MMX technology-based
environment contains fields for storing the 16-bit code and data
segments as well as the 32-bit instruction and data pointers. 64-
bit FPU and MMX technology-based software, however, must be

Table 20. MOVSXD Instruction

Mnemonic Opcode (hex) Description

MOVSXD r64, r/m32 63h Move Dword to Qword, sign extension
110

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
able to save and restore the full 64-bit instruction and data
pointers when the FXSAVE and FXRSTOR instructions are
executed.

Figure 25 shows the first 32-bytes of the legacy 32-bit FPU and
MMX environment. Figure 26 shows the same 32-bytes as
redefined for 64-bit software to hold the full 64-bit instruction
and data pointers. All other FPU and MMX technology-based
environment fields not shown are identical for legacy 32-bit and
64-bit software.

Figure 25. First 32-Bytes of FXSAVE and FXRSTOR Data (32-Bit Format)

Figure 26. First 32-Bytes of FXSAVE and FXRSTOR Data (64-Bit Format)

Byte 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+16 Reserved MXCSR Reserved DS Data Pointer

+0 Reserved CS Floating-Point EIP FOP FTW FSW FCW

Byte 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+16 Reserved MXCSR Data Pointer

+0 Floating-Point RIP FOP FTW FSW FCW
111

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Because all long-mode interrupt handlers are executed in 64-bit
mode (see "Interrupts" on page 69) a 64-bit interrupt handler
must be able to save and restore the FPU and MMX technology-
based environment on behalf of both compatibility-mode and
64-bit-mode software. Selection of the 32-bit or 64-bit format is
accomplished by using the corresponding operand size in the
FXSAVE and FXRSTOR instructions. When 64-bit software
executes an FXSAVE and FXRSTOR with a 32-bit operand size
(no operand-size override) the 32-bit legacy format shown in
Figure 25 is used. When 64-bit software executes an FXSAVE
and FXRSTOR with a 64-bit operand size, the 64-bit format
shown in Figure 26 is used.

FXSAVE and FXRSTOR save and restore the XMM registers if
CR4.OSFXSR=1. In legacy mode (LMA=0), registers XMM0
through XMM7 are saved and restored. In long mode (LMA=1),
registers XMM0 through XMM15 are saved and restored.

A.10 New Encodings for Control and Debug Registers

In 64-bit mode, additional encodings for control and debug
registers are available. The REX.R bit is used to modify the
ModRM reg field when that field encodes a control or debug
register, as shown in Table 6 on page 20. These additional
encodings enable the processor to address CR8–CR15 and DR8–
DR15. One additional control register, CR8, is defined in 64-bit
mode.

In the first implementation of the Hammer family of processors,
CR9–CR15 and DR8–DR15 are not implemented, and CR8
becomes the TPR, described in "Task Priority" on page 75. Any
attempt to access the unimplemented registers results in an
invalid-opcode exception (#UD).

A.11 SWAPGS Instruction

The SWAPGS instruction is a privileged instruction intended
for use by system software. It is used upon entry to the kernel
(via SYSCALL, interrupt or exceptions) to obtain a pointer to
kernel data structures.

SWAPGS exchanges the kernel data pointer from the
KernelGSbase MSR with the GS base register. The kernel can
112

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
then use the GS prefix on normal memory references to access
kernel data structures.

The need for SWAPGS arises from the requirement that, upon
entry to the OS kernel, the kernel needs to obtain a 64-bit
pointer to its essential data structures. When using SYSCALL
to implement system calls, no kernel stack exists at the OS
entry point. Neither is there a straightforward method to obtain
a pointer to kernel structures, from which the kernel stack
pointer could be read. Thus, the kernel can’t save GPRs or
reference memory. By design, SWAPGS does not require any
GPR or memory operands; therefore, no registers need to be
saved before using it.

Similarly, when the OS kernel is entered via an interrupt or
exception (where the kernel stack is already set up), SWAPGS
can be used to quickly get a pointer to the kernel data
structures.

The KernelGSbase is MSR C000_0102h.

The KernelGSbase MSR itself is only accessible via the normal
RDMSR/WRMSR instructions. Those instructions are
privileged so KernelGSbase MSR is only readable/writeable by
the OS. WRMSR will cause a #GP(0) if the value written into
KernelGSbase is not canonical; the SWAPGS instruction itself
does not perform a canonical check.

SWAPGS Operation. The following pseudo-code describes the
operation of SWAPGS:

if mode <> 64 then #UD;
if CPL <> 0 then #GP (0);

 temp = GS base;
 GS base = MSR_KernelGSbase;
 MSR_KernelGSbase = temp;

Possible Exceptions:

Protected Mode:

 #UD if mode <> 64-bit mode

 #GP(0) if CPL <> 0

 Real Mode:
113

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
 #UD always, since mode <> 64-bit mode

 Virtual Mode:

 #UD always, since mode <> 64-bit mode

SWAPGS Instruction Encoding. SWAPGS uses a previously unused
(and illegal) MODRM encoding of the 0f 01 /7 opcode.
Previously, only the memory forms (mod <> 11) of this opcode
were legal and encoded the INVLPG instruction. The register
forms (mod=11) were illegal. In 64-bit mode, one of the eight
register forms (r/m=000) is used for SWAPGS. The other
encodings remain illegal and may be used in the future.

SWAPGS Example. At a kernel entry point, the OS can use
SWAPGS to obtain a pointer to kernel data structures and
simultaneously save the user’s GS base. Upon exit, the OS can
use SWAPGS to restore the user’s GS base. The following code
shows an example.

SystemCallEntryPoint:
 SWAPGS ; get kernel pointer, save user GSbase
 mov gs:[SavedUserRSP], rsp ; save user’s stack pointer
 mov rsp, gs:[KernelStackPtr] ; set up kernel stack
 push rax ; now save user GPRs on kernel stack
 mov rax, gs:[CPUnumber] ; get CPU number
 . ; perform system service
 .
 SWAPGS ; restore user GS, save kernel pointer

A.12 SSE2 conversion instructions

SSE2 introduces several new instructions that convert between
floating point values in the XMM registers and 32-bit integers
in the GPRs. When the operand size is 64 bits, these

Table 1.

Opcode
MOD R/M byte Instruction

MOD REG R/M not 64-bit mode 64-bit mode

0F 01
MOD <>11 111 xxx INVLPG INVLPG

11 111 000 #UD SWAPGS
11 111 <>000 #UD #UD
114

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
instructions are promoted to 64 bits enabling conversion to and
from 64-bit integers.

The affected instructions along with the 64-bit extensions are:

CVTSD2SI/CVTTSD2SI. (convert scalar double to signed integer)

 GPR[63:0] = CVT_TO_INT64(xmm64/mem64)

CVTSS2SI/CVTTSS2SI. (convert scalar single to signed integer)

 GPR[63:0] = CVT_TO_INT64(xmm32/mem32)

CVTSI2SD. (convert signed integer to scalar double)

 XMM[63:0] = CVT_TO_DP(reg/mem64)

 XMM[127:64] = Unchanged

CVTSI2SS. (convert signed integer to scalar single)

 XMM[31:0] = CVT_TO_SP(reg/mem64)

 XMM[127:32] = Unchanged
115

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Appendix B Long Mode Differences

Table 21 on page 116 summarizes the major differences
between 64-bit mode and legacy x86 protected mode. The third
column indicates whether the difference also applies to
compatibility mode.

Table 21. Differences Between Long Mode and Legacy Mode

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

Application
Programming

Addressing RIP-relative addressing available

no

Data and Address
Sizes

Default data size is 32 bits

REX Prefix toggles data size to 64 bits

Default address size is 64 bits

Address size prefix toggles address size to 32 bits

Instruction
Differences

Various opcodes are invalid or changed (see Table 18 on
page 107)

MOV reg,imm32 becomes MOV reg,imm64 (with REX
operand size prefix)

REX is always enabled

Direct-offset forms of MOV to or from accumulator
become 64-bit offsets

MOVD extended to MOV 64 bits between MMX™
registers and long GPRs (with REX operand-size prefix)
116

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
System
Programming

x86 Modes Real and virtual-8086 modes not supported yes

Task Switching Task switching not supported yes

Addressing

64-bit virtual addresses

yes4-level paging structures

PAE must always be enabled

Segmentation

CS, DS, ES, SS segment bases are ignored

noCS, DS, ES, FS, GS, SS segment limits are ignored

CS, DS, ES, SS Segment prefixes are ignored

Exception and
Interrupt Handling

All pushes are 8 bytes

yes
IDT entries are expanded to 16 bytes

SS is not changed for stack switch

SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

yes

16-bit call gates are illegal

32-bit call gate type is redefined as 64-bit call gate and is
expanded to 16 bytes.

SS is not changed for stack switch

System-Descriptor
Registers GDT, IDT, LDT, TR base registers expanded to 64 bits yes

System-Descriptor
Table Entries and
Pseudo-descriptors

LGDT and LIDT use expanded 10-byte pseudo-
descriptors, as shown in Figure 9 on page 35

no
LLDT and LTR use expanded 16-byte table entries, as
shown in Figure 10 on page 35

Table 21. Differences Between Long Mode and Legacy Mode (continued)

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?
117

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Appendix C Initialization Example

This section describes the steps, and provides sample code, for
placing the processor into long mode.

mydata segment para

;;
; generic data segment, holds pseudo-descriptors used
; by lgdt and lidt instructions
;;;

;
; 32-bit temporary GDT and IDT
;

pGDT32 label fword ; used by lgdt
 dw gdt32_limit ; limit ...
 dd gdt32_base ; 32-bit base

pIDT32 label fword ; used by lidt
 dw idt32_limit ; limit ...
 dd idt32_base ; 32-bit base

;
; 64-bit GDT and IDT (64-bit linear base address)
;

pGDT64 label tbyte ; used by lgdt
 dw gdt64_limit ; limit ...
 dq gdt64_base ; and 64-bit base

pIDT64 label tbyte ; used by lidt
 dw idt64_limit ; limit ...
 dq idt64_base ; and 64-bit base

mydata ends ; end of data segment

code16 segment para use16; 16-bit code segment

;;;
;
; 16-bit code, real mode
;

118

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
;;;

;
;Initialize ds to point to the data segment containing pGDT32
;and PIDT32. Set up real-mode ss:sp, in case of
;interrupts and exceptions
;

cli
mov ax, seg mydata
mov ds, ax
mov ax, seg mystack
mov ss, ax
mov sp, esp0

;
; Use CPUID to determine if Long Mode feature is available
;

mov eax, 80000000h ; extended function 8000000h
cpuid ; largest extended function
cmp eax, 80000000h ; any function > 80000000h?
jbe no_long_mode ; no extended features, no LM
mov eax, 80000001h ; extended features function
cpuid ; edx = extended features flag
bt edx, 29 ; test if Long Mode feature present
jnc no_long_mode ; exit if no LM

;
; load GDT before entering protected mode.
; this gdt contains at minimum:
; 1) a CPL 0 16-bit code descriptor for this code segment
; 2) a CPL 0 32/64-bit code descriptor for the 64-bit code
; 3) a CPL 0 read/write data segment, usable for ss
;
; load 32-bit IDT (in case any interrupts and exceptions occur
; after entering protected mode but before enabling long mode)
;

lgdt ds:[pGDT32]
lidt ds:[pIDT32]

; enable protected mode (PE=1)

mov eax, 000000011h
mov cr0, eax

; far jump to turn protected mode on
; code16_sel points to the gdt descriptor for the code
; currently being executed
119

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
db 0eah ;far jump
dw offset now_in_prot;
dw code16_sel;

;;;
; at this point we are in 16-bit protected mode
;;;
now_in_prot:

; set protected mode ss:esp
; stack_sel points to a gdt descriptor for a read/write data
; segment
; skip setting ds/es/fs/gs because we are jumping right to 64-bit code

mov ax, stack_sel
mov ss, ax
mov esp, esp0

; enable 64-bit paging entries (PAE=1)
; (this is _required_ before activating long mode)
; notice that we don’t enable paging until after long mode is
; activated

mov eax, cr4
bts eax, 5
mov cr4, eax

; establish Long Mode page tables by
; pointing the 64-bit cr3 to the base of the pml4 page table
; (which must be located <4GB because only 32 bits of CR3 are
; loaded when not in 64-bit mode

mov eax, pml4_base ; pointer to 4-level page table
mov cr3, eax ; establish PDBR (<4GB)

; set Long Mode enable (EFER.LME=1)

mov ecx, 0c0000080h ; EFER MSR number
rdmsr
bts eax, 8 ; set LME
wrmsr ; write EFER

;
; enable paging and activate Long Mode (CR0.PG=1)
;

mov eax, cr0
bts eax, 31 ; set Paging Enable
mov cr0, eax ; enable paging and activate Long Mode
120

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
; at this point we are in 16-bit compatibility mode
; (LMA=1, CS.L=0, CS.D=0)
; Now -
; jump to 64-bit code segment
; - the offset must be _linear_ address of the 64-bit entry point
; because no segmentation in long mode
; the selector points 32/64-bit code selector in the current gdt

db 066h
db 0eah
dd start64_linear
dw code64_sel

code16ends ;end of the 16-bit code segment

;;;
;
;;
;;; start of 64-bit code
;;
;
;;;

code64 para use64

start64:; at this point, we’re in true 64-bit code

; point the 64-bit rsp register to the linear address of
; the stack (no need to set SS here, because the SS register
; is not used in 64-bit mode)

mov rsp, stack0_linear

; This LGDT is only needed if the actual long mode gdt should be
; located at a linear address that’s >4GB . If the long mode
; gdt is located at a 32-bit linear address, putting 64-bit
; descriptors in the gdt pointed to by [pGDT32] is just fine.
; pGDT64_linear is the _linear_ address of the 10-byte gdt
; pseudo-descriptor

; The new GDT should have a valid CPL0 64-bit code segment descriptor
; at the entry corresponding to the current CS selector. Alternatively,
; a far transfer to a valid CPL0 64-bit code segment descriptor in the new
; GDT needs to be done before enabling interrupts.

lgdt [pGDT64_linear]
121

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
; load 64-bit IDT (this is _required_, because the 64-bit IDT
; uses 64-bit interrupt descriptors, while the 32-bit IDT used
; 32-bit interrupt descriptors) pIDT64_linear is the _linear_
; address of the 10-byte idt pseudo-descriptor

lidt [pIDT64_linear]

; set current TSS. tss_sel should point to a 64-bit tss
; descriptor in the current GDT. The TSS is used for inner-level
; stack pointers and the IO bit map

mov ax, tss_sel
ltr ax

; set current LDT. ldt_sel should point to a 64-bit ldt
; descriptor in the current GDT

mov ax, ldt_sel
lldt ax

; using fs: and gs: prefixes on memory accesses still use the
; 32-bit fs.base and gs.base. Reload these 2 registers before using
; the fs, gs prefixes. FS and GS can be loaded from the gdt
; using a normal "mov fs,foo" type instructions), which loads a
; 32-bit base into fs or gs, or use WRMSR to assign 64-bit
; base values into MSR_FS_base or MSR_GS_base.

mov ecx, MSR_FS_base
mov eax, FsbaseLow
mov edx, FsbaseHi
wrmsr

; Reload CR3 if Long Mode page tables are to be located above 4GB
; Because the original CR3 load was done in 32 bit mode, it could only load
; 32 bits into CR3. Thus current page tables are located in the lower 4GB of
; physical memory
; This MOV to CR3 is only needed if the actual long mode page tables
; are located above 4GB physical should be
; located at a linear address that’s >4GB .
;

mov rax, final_pml4_ptr ; point to PML4
mov cr3, rax ; load 64-bit CR3

; enable interrupts
sti ;enabled INTR
122

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
 <insert 64-bit code here>
123

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Appendix D Implementation Considerations

This section describes software considerations specific to the
first implementation of the Hammer family of processors. It is
possible, but not guaranteed, that these same issues will also be
applicable to future implementations of the x86-86 architecture.

Address Size

In the first implementation of the Hammer family of processors,
the supported virtual-address size in long mode is 48 bits (30h)
and the physical-address size is 40 bits (28h). See "CPUID" on
page 31 for details.

Operand Alignment

The first implementation of the Hammer family of processors
has a penalty for loading data that crosses a cache-line (64-byte)
boundary. The minimum penalty is one cycle. If the load hits a
previous store that has not yet written the data cache, the
penalty can be greater.

This alignment penalty becomes an issue in long mode, because
of the more-frequent occurrence of 8-byte data than in legacy
mode. For optimal performance, the compiler should ensure
that 8-byte data does not cross a cache-block boundary.

The compiler should also be careful not to let items on the stack
cross a cache-line boundary. Stack-alignment issues exist in all
operand sizes (16-, 32-, and 64-bit) and modes. They are more
acute in 64-bit mode, because a mixture of 4-byte data items
and 8-byte stack pointers might be pushed onto the stack. For
best performance, the compiler should keep procedure locals
and function parameters aligned on the stack with respect to
cache-line (64-byte) boundaries.
124

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
CR8 Interactions with APIC

The first implementation of the Hammer family of processors
includes an external interrupt controller (EIC) based on an x86
local advanced programmable interrupt controller (APIC).
Some aspects of this local APIC affect the operation of the
architecturally defined task priority register (CR8.TPR),
described in "Task Priority Register (TPR)" on page 34.

The notable CR8 and APIC interactions are:

■ The processor powers up with the local APIC disabled.

■ The APIC must be enabled for CR8 to function as the TPR
for the following:

- Writes to CR8 are reflected into the APIC’s TPR register.
APIC.TPR.7:4 = CR8.3:0, APIC.TPR.3:0=0

- Reads of CR8 return APIC.TPR.7:4, zero extended to 64
bits

The interrupt priority, to which CR8.TPR is compared, is
determined by the following equation:

interrupt priority = (interrupt vector)/16

In other words, the interrupt priority is determined by the high-
order interrupt vector bits 7:4.

See the AMD Athlon™ Processors BIOS, Software, and Debug
Developer's Guide for complete information regarding the local
APIC.
125

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
Physical Address Fields in MSRs

Memory Type Range Registers. The memory type range registers
(MTRRs) are legacy MSRs that apply memory- type
classifications to ranges of physical memory. Eight pairs of
variable range MTRRs are defined in the first implementation
of the Hammer family of processors, each pair consisting of a
physical base address and type register (MTRRphysBase) and a
physical address range mask register (MTRRphysMask).

The legacy MTRRs are architecturally defined as 64 bits and
can accommodate the maximum 52-bit physical address allowed
by the long mode architecture. The MTRRs in the first
implementation of the Hammer family of processors are 40 bits
wide and can hold the 40-bit physical address supported by the
implementat ion (see Figure 27) . B i t s 63 :40 in the
MTRRphysBase and MTRRphysMask registers are reserved.
The processor will generate a #GP fault if software attempts to
set any of the reserved MTTR bits to 1.

MTRRphysBase Register

MTRRphysMask Register

Figure 27. MTRRphysBase and MTRRphysMask Register Pair Formats

When the MTTRs are in use, the processor references the entire
40-bit value in both registers regardless of mode. Legacy mode
software is responsible for writing MTTR bits 39:36 with 0’s to
ensure the registers operate properly.

Other MSRs. A number of other model-specific registers (MSRs)
have fields holding physical addresses. Examples include the
APIC base register and top-of-memory register. Generally, any
model specific register that contains a physical address is
defined architecturally to be 64 bits wide in legacy mode.
Previous implementations, however, support a maximum
address size of 36 bits.

63 40 39 12 11 8 7 0
Reserved–MBZ PhysBase Reserve–MBZ Type

63 40 39 12 11 10 0
Reserved–MBZ PhysMask V Reserved–MBZ
126

24108C—January 2001 AMD 64-Bit Technology

Preliminary Information
MSRs that hold physical addresses are increased in size to 40
bits in the first implementation of the Hammer family of
processors. This means that the MSRs can hold the 40-bit
physical address supported by the implementation. Bits 63:40 in
those registers are reserved, and the processor will generate a
#GP fault if software attempts to set any of the reserved MSR
bits to 1.

When physical addresses are read from MSRs by the processor,
the entire 40-bit value is read regardless of the operating mode.
Legacy mode software is responsible for writing physical
address values into the MSRs such that the implemented bits
above bit 36 are cleared to zero. This ensures the features using
the MSR contents operate properly. In the first implementation
of the Hammer family of processors, legacy software is
responsible for clearing physical address bits 39:36 to zero
when writing those physical addresses to an MSR.
127

AMD 64-Bit Technology 24108C—January 2001

Preliminary Information
128

	Introduction
	Motivation for a 64-Bit Architecture
	Features of the x86-64™ Architecture
	Long Mode
	64-Bit Mode
	Register Extensions
	RIP-Relative Data Addressing

	Compatibility Mode
	Legacy Mode

	Definitions
	Notation
	Registers

	Application Programming
	Overview
	Application Software Registers and Data Structures
	CPUID
	Application Registers
	General-Purpose Registers (GPRs)
	Legacy-Mode and Compatibility-Mode GPRs
	64-Bit Mode GPRs
	Zero-Extension of Results
	Preservation of GPR High 32 Bits Across Mode Switches

	Streaming SIMD Extension (SSE) Registers

	Memory Organization
	Address Calculations in 64-Bit Mode
	Effective Addresses
	Instruction Pointer
	Displacement and Immediates
	Zero Extending 16-Bit and 32-Bit Addresses

	FS and GS As Base of Address Calculation

	Instruction-Set Conventions
	Address-Size and Operand-Size Prefixes
	Address-Size Overrides
	Operand-Size Overrides

	REX Prefixes
	Number and Position
	Encoding

	REX Prefix Fields
	REX.W: Operand Width
	REX.R: Register
	REX.X: Index
	REX.B: Base
	Encoding Examples
	Byte-Register Addressing
	Special Encodings for Registers
	Implications for INC and DEC Instructions

	Displacement
	Direct Memory- Offset MOVs
	Immediates
	RIP-Relative Addressing
	Encoding
	Effect of REX Prefix on RIP-Relative Addressing
	Effect of Address-Size Prefix on RIP-relative addressing

	Default 64-Bit Operand Size
	Stack Pointer
	Branches
	Near Branches
	Far Branches Through Long-Mode Call Gates
	Stack Switches
	Branches to 64-Bit Offsets
	SYSCALL and SYSRET

	System Programming
	Overview
	Canonical Address Form
	CPUID
	8000_0000h
	8000_0001h
	8000_0008h

	System Registers
	Extended Feature Enable Register (EFER)
	Control Registers
	Task Priority Register (TPR)

	Descriptor Table Registers
	Debug Registers

	Enabling and Activating Long Mode
	Processor Modes
	Activating Long Mode
	System Descriptor Table Considerations
	Long-Mode Page Table Considerations
	Consistency Checks

	Virtual-8086 Mode

	Compatibility Mode: Support for Legacy Applications
	Long-Mode Semantics
	Switching Between 64-Bit Mode and Compatibility Mode

	Segmentation
	Code Segments
	Impacts on Segment Attributes

	Data and Stack Segments
	Segment Loads
	Special Treatment of FS and GS Segments

	System Descriptors
	Descriptor-Table Base Registers
	Descriptor Tables
	LDT and TSS Descriptors
	LGDT and LIDT Instructions
	LLDT and LTR Instructions

	Virtual Addressing and Paging
	Virtual-Address and Physical-Address Size
	Implementation Specifics
	Canonical Address Form

	Paging Data Structures
	Physical-Address Extensions
	PML4
	PDP
	PDE, PTE, and Page Offsets
	Large Page Sizes
	Page Table Formats for 4K Page Size
	PDP Table-Entry Exceptions for 4K Page Size
	Page Table Formats for 2M Page Size
	PDP Table-Entry Exceptions for 2M Page Size

	Enhanced Legacy- Mode Paging
	PAE in Legacy Mode
	PSE in Legacy Mode

	CR2 and CR3
	Address Translation
	4KB Pages
	2MB Pages

	Privilege-Level Transitions and Far Transfers
	Call Gates
	Gate Descriptor Format
	Call Gates in Long Mode
	Far Call Operand Size
	Privilege-Level Changes and Stack Switching
	Automatic Parameter Copy
	RETF Allows Null SS Selector

	SYSCALL and SYSRET
	System Target-Address Registers
	Operation
	EFLAGS Handling
	Selecting SYSRET return mode

	Task State Segments
	64-Bit Task State Segment

	Interrupts
	Gate Descriptor Format
	Only 64-Bit Interrupt Gates in Long Mode

	Stack Frame
	Interrupt Stack Alignment

	IRET
	IRET Handling of SS:RSP
	IRET Allows Null SS Selector

	Stack Switching
	Stack Switches Legacy Mode and Long Mode
	Interrupt Stack Table

	Task Priority
	Effect of IC on TPR

	Appendix A Integer Instructions in 64-Bit Mode
	A.1 General Rules for 64-Bit Mode
	A.2 Operation and Operand Size in 64-Bit Mode
	A.3 Invalid Instructions in 64-Bit Mode
	A.4 Instructions with 64-Bit Default Operand Size in 64-Bit Mode
	A.5 Single-Byte INC and DEC Instructions in 64-Bit Mode
	A.6 NOP in 64-Bit Mode
	A.7 Segment Override Prefixes in 64-Bit Mode
	A.8 MOVSXD
	A.9 FXSAVE and FXRSTOR
	A.10 New Encodings for Control and Debug Registers
	A.11 SWAPGS Instruction
	SWAPGS Operation
	Possible Exceptions:
	SWAPGS Instruction Encoding
	SWAPGS Example

	A.12 SSE2 conversion instructions
	CVTSD2SI/CVTTSD2SI
	CVTSS2SI/CVTTSS2SI
	CVTSI2SD
	CVTSI2SS

	Appendix B Long Mode Differences
	Appendix C Initialization Example
	Appendix D Implementation Considerations
	Address Size
	Operand Alignment
	CR8 Interactions with APIC
	Physical Address Fields in MSRs
	Memory Type Range Registers
	Other MSRs

